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1. Theoretic Background

In this section, a brief description of the theoretical concepts required to understand the
Mößbauer effect and its application experiment will be given. If not stated otherwise,
the discussion is based on the Instructions [10, 14].

1.1. Interaction of Electromagnetic Radiation with Matter

In this experiment, gamma radiation is used to investigate the spectrum of natural iron
and stainless steel. Gamma radiation is high-energy electromagnetic radiation which
can be caused by radioactive decay of excited atomic nuclei. The background caused by
interaction of electromagnetic radiation with matter has to be taken into account when
evaluating this experiment. The main contributions to the interaction of electromagnetic
radiation with matter are described by the photoelectric effect, Compton scattering and
pair creation, the mechanisms of which will be briefly sketched in the following.

Photoelectric Effect A photon transfers all of its energy to an electron of an atom,
which then has enough energy to leave the atom. It is left with a kinetic energy of
Ekin = hf − Ebin, where hf is the energy of the photon and Ebin is the binding energy
of the electron. In this process, the photon is completely absorbed by the electron.
This is only possible with bound electrons, as the existence of the nucleus is necessary
for the conservation of momentum. As the probability for the photoelectric effect is
proportional to the fifth power of the nuclear charge number, this effect mainly occurs
in heavy elements.

Compton Scattering Compton Scattering occurs when a photon and a free electron
scatter. During this process, the photon transfers part of its energy to the electron
and as a result experiences red shifting. The energy of the photon after the interaction
depends on the angle at which the scattering occurs.

Pair Creation If a photon has an energy of at least 1022 keV, it can transform all of
its energy into a electron-positron-pair. The energy is converted to the rest mass of the
electron and the positron (511 keV each).

Attenuation of Gamma Radiation The absorbers used in this experiment are en-
closed in acrylic glass. Therefore, the absorption of gamma radiation in acrylic glass
also has to be taken into account. The ratio of the intensity I and the initial intensity
I0 is given by

R := I

I0
= exp

(
−µ

ρ
· ρd

)
,

where µ/ρ is the mass attenuation coefficient, ρ is the density of the absorber material
and d is the thickness of the absorber.

3



FP-II Mößbauer-Effect

In this experiment, the focus is on the 14.4 keV emission line of iron. The other main
emission lines are at 122.2 keV and 136.6 keV [10]. As the threshold for pair creation
is 1022 keV, pair creation does not contribute to the background in this experiment. A
photon interacting via the photoelectric effect is completely absorbed. It can not be
detected by the scintillator and thus the photoelectric effect does not contribute to the
background in this experiment as well. The dominant contribution is therefore Compton
scattering. This can also clearly be seen in Fig. 1, in which the absorption coefficients
due to interaction with matter are shown at various photon energies.

Figure 1: The photon absorption coefficient µ/ρ in terms of photon energy Eγ taken
from [7]. The contribution to the total absorption coefficient of the three main effects,
which are Compton scattering, photoelectric effect and pair production, is pictured
separately. At the energy range of interest in this experiment, 14 keV to 136 keV, pair
production does not contribute.

1.2. The Doppler Effect

The relativistic Doppler effect describes the change of frequency of light that occurs when
a source and a receiver are moving relative to each other. The frequency fr observed by
the receiver is given by

fr =
√

1 − v
c

1 + v
c

fs , (1)

where fs is the frequency emitted by the source and v is the relative velocity of source
and receiver. Expanding Eq. (1) to first order in v/c, one finds

fr ≈
(

1 − v

c

)
fs . (2)
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Inserting the energy for a photon, Eγ = hf , where h is the Planck constant, one finds
that the frequency shift induced by the relativistic Doppler effect leads to a shift in
energy given by

Eγ,r ≈
(

1 − v

c

)
Eγ,s . (3)

1.3. The Mößbauer Effect

The main idea of this experiment is to use the 14.4 keV emission line of an excited state
of 57Fe for spectroscopy. That is why it is important to understand the effects that can
lead to shifts in the energy of the emitted photons.

Recoil in a classical two-body decay The simplest way to model the decay of an
excited nucleus is by assuming that it is confined within a large rigid lattice. In the
initial state, the lattice is at rest and has an internal energy of E2 due to the excited
nucleus. In the final state, the rigid body has lowered its energy to E1. It now has
a momentum, p = mv, where m is the mass of the rigid body and v is its final state
velocity. Additionally, a photon with energy Eγ = hf and momentum pγ = hf/c was
emitted. Using conservation of momentum and energy,

0 = hf

c
+ mv and E2 = E1 + Eγ + mv2

2 ,

the energy of the photon can be calculated:

Eγ = E2 − E1 − h2f2

2mc2 =: E0 + ER , where E0 := E2 − E1 . (4)

From Eq. (4), it is immediately clear that the energy of the photon is not equal to the
energy difference E0. This is due to the recoil experienced by the rigid body, causing
it to no longer be at rest. The energy loss due to recoil can be estimated using the
molecular mass miron = (55.845±0.002) g mol−1 [13]. For one iron atom, miron ≈ 52 GeV,
resulting in ER ≈ 2 meV, while the energy loss due to recoil for one mol of iron is
ER ≈ 3.3·10−27 eV. As in this experiment, the 14.4 keV line of iron is used, E0 = 14.4 keV.
Since E0 ≫ ER, the energy lost to nuclear recoil is negligible in this case.
However, recoil is not the only effect that can lead to energy loss. The model of a
rigid body for the iron source considers only classical particles and neglects interaction
between the atoms in the lattice.

The Law of Dulong-Petit The law of Dulong Petit is an experimentally found ap-
proximation for the behavior of the heat capacity of a solid at high temperatures. In the
following, several models which aim to formulate a theoretical derivation for the heat
capacity of a solid body will be discussed.
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Einstein Model The Einstein model describes a solid as a lattice of independent
particles bound by an external potential which for all atoms has the same eigenfrequency.
The potential the atoms are bound in is a quantized harmonic potential. The Einstein
model recovers the law of Dulong-Petit at temperatures that are large in comparison to
the eigenfrequency. However, at lower temperatures, the effects caused by the interaction
of the atoms can no longer be neglected, and the predictions of the Einstein model do
not match experimental findings anymore.

Debye Model The Debye model takes the correlated movement of atoms into ac-
count. In analogy to Planck’s law of black body radiation, which treats electromagnetic
radiation as photons in a box, the Debye model describes vibrations of the atomic lattice
as phonons in a box. Since the propagation medium of a phonon is the atomic lattice,
and there is only a finite amount of vibrating atoms in the lattice, a phonon can not
have an arbitrarily high frequency. The maximal frequency can be fixed by requiring
the Dulong-Petit law for the heat capacity in the high-temperature limit. The Debye
model also reproduces the experimentally found low-temperature dependency of the heat
capacity.

Debye-Waller factor In this experiment, photons emitted through a nuclear decay
of iron are used for spectroscopy. The previous sections have discussed effects that
can shift the frequency of these photons and thus broaden the emitted line. For the
purpose of spectroscopy, the emitted line should be as narrow as possible. Therefore, it
is advantageous to use spectral lines originating from an emission that does not cause
lattice vibrations. The occurrence of such spectral lines is called the Mößbauer effect.
The ratio of emissions that do not cause lattice vibrations quantifies the Mößbauer
effect and is called Debye-Waller factor. The Debye-Waller factor of 57Fe and 187Re as
functions of temperature are pictured in Fig. 2.
The Debye-Waller factor of the source can be computed by

fS = Ṅ(∞) − Ṅ(0)
Ṅ(∞)

(
1 − exp

(
−1

2TA

)
J0

(1
2 iTA

))−1
, (5)

as given in Ref. [5]. In the above equation, TA is the dimensionless effective absorber
thickness and J0 denotes the zeroth Bessel function.

1.4. Nuclear Transitions

Natural Linewidth of Spectral Lines The population of an excited state follows
an exponential distribution,

N(t) = N(0)e−Γt, (6)
where N(t) denotes the population of the excited state at a given time t and τ = ℏ/Γ is
the lifetime of the excited state. The frequencies then follow a Breit-Wigner distribution,
the Full-Width-Half-Maximum (FWHM) of which is given by Γ. Γ is called the natural
decay width.
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Figure 2: Fractions of recoil-free nuclear transitions (Debye-Waller factors) in 57Fe and
187Re, shown as functions of the temperature, taken from [14]. At room temperature
(≈ 294 K), the Debye-Waller factor of 57Fe used in this experiment is near 1, corre-
sponding to a large fraction of recoil-free nuclear transitions in the source.

Broadening of Spectral Lines Due to thermal movement of the atoms, the fre-
quencies of the emitted photons are Doppler shifted. This leads to a broadening of the
spectral line. Since the Doppler shift only depends on the velocity component in the
direction of the detector, its distribution is Gaussian. The frequency shift caused by
scattering in the absorber can also be modeled by a Gaussian.
The distribution of the sum of two independent random variables is given by the con-
volution of the distribution of the variables. Thus, the spectral lines are distributed
via the convolution of a Breit-Wigner distribution and a Gaussian distribution. This
convolution is called Voigt-profile. It is important to note that the lifetime of a state
is related to the natural linewidth and not the width of the convolution. It can be
estimated by fitting a Voigt-profile to the data and extracting the parameter Γ of the
original Breit-Wigner distribution. The lifetime is then given by ℏ/Γ.

1.5. Isomer Shift

The energy levels of an atomic nucleus are influenced by exterior electric and magnetic
fields. This includes the fields caused by the electrons surrounding the nucleus. For
atoms confined in a lattice, the electron density for an atom may vary slightly, causing
a shift in the energy level. If the chemical composition of source and absorber slightly
differs (such as in the case of an iron emitter and a stainless steel absorber), the energy
difference to the excited states of source and absorber is shifted. This is called isomer
shift, and since it depends on the chemical composition, it is also called chemical shift.
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1.6. Hyperfine Splitting

This subsection is based on the instructions [10] as well as Ref. [12]. An external mag-
netic field, such as the one caused by electrons surrounding the nucleus, lifts energy
degeneracies of nuclear states. States with the same angular momentum given by the
quantum number I but different quantum numbers mI , which is the projection of the
angular momentum on the z-axis, now have slightly different energies. This splitting is
referred to as hyperfine splitting. The energy shift is given by

Ehyp = −µmIB

I
,

where µ is the magnetic moment and B is the absolute value of the surrounding magnetic
field. Therefore, the energy a photon must have to excite a state specified by (E1, I1,
mI,1) to a state (E2, I2, mI,2) is given by

Eγ = (E2 − E1) + Eiso −
(

µ2mI,2
I2

− µ1mI,1
I1

)
B , (7)

where E1 and E2 are the energies of the degenerate states corresponding to I1 and I2.
Eiso denotes the relative isomeric shift caused by slight chemical differences between
source and absorber. The selection rules (for dipole order in perturbation theory) state
that transitions can only occur between states where the differences in quantum numbers
I and mI are

∆I = ±1 and ∆mI = 0, ±1 .

In this experiment, the Ig = 1/2 state of iron is excited to Ie = 3/2. The hyperfine
splitting leads to six distinct energy levels: mI = ±1/2 for Ig and mI = ±1/2, ±3/2 for
Ie. The selection rules allow for six transitions, pictured in Fig. 3. The absorption lines
corresponding to these transitions can be observed in this experiment. The energies of
these absorption lines can be calculated from Eq. (7) and are listed in Table 1.

Absorption line mg me Energy
A −1/2 −3/2 E0 + Eiso − (−µe + µg)B
B −1/2 −1/2 E0 + Eiso − (−1

3µe + µg)B
C −1/2 1/2 E0 + Eiso − (1

3µe + µg)B
D 1/2 −1/2 E0 + Eiso − (−1

3µe − µg)B
E 1/2 1/2 E0 + Eiso − (1

3µe − µg)B
F 1/2 3/2 E0 + Eiso − (µe − µg)B

Table 1: Energies of the hyperfine absorption lines of natural iron, calculated using
Eq. (7). E0 denotes the 14.4 keV line of iron. µg and µe are the magnetic moments of
the ground state and the excited state. The letters correspond to those in Fig. 3.

Note that the energies are symmetric around E0 +Eiso, where E0 is the 14.4 keV absorp-
tion line of the degenerate states in iron.
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Figure 3: Energy level diagram of natural iron. The transitions expected to be observed
in this experiment are marked by arrows and denoted with A to F. The corresponding
spectrum is pictured on the right-hand side. Note that the data is generated and not
result of a measurement. The figure is adapted from Refs. [10, 12].

1.7. Decay of 57Co

The radioactive source used in this experiment is a 57Co-source. The cobalt decays via
electron capture to excited states of 57Fe. The decay to the I = 5/2-state of iron is the
dominant decay channel with a probability of 99.8 %. The I = 5/2-state has a half-life of
8.9 ns and decays to 89 % to the I = 3/2-state, emitting a 122.2 keV and to 11 % to the
ground state, which produces a 136.6 keV emission line. The I = 3/2-state has a half-life
of 98 ns and decays to the ground state. The transition of I = 3/2-state to the ground
state emits a 14.4 keV line, which is the emission line of interest in this experiment. The
decay scheme of 57Co with the relevant transitions for this experiment is pictured in
Fig. 4.

57
26Fe

5/2

3/2

1/2

I EC

99.8 %

57
27Co

136.6 keV
11 %

122.2 keV
89 %

14.4 keV

Figure 4: Simplified decay scheme of 57Co. The emission line of interest in this experi-
ment is the 14.4 keV-line (red). The data is taken from Ref. [14].
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2. Setup of the Experiment

In this section, the setup of the experiment will be described. The electronic devices
used in the setup will also briefly be discussed.

2.1. Setup

The main setup of the experiment is made up of a 57Co-source, a mount on which the
absorbers can be placed, and a NaI scintillator. The mount can be moved by an engine
which can be set to velocities at a high precision. A picture of this part of the setup
is shown in Fig. 5. The engine is connected to a computer and can be controlled by a
program. The scintillator is connected to a shaping amplifier. The unipolar output of
the amplifier is connected to the SCA as well as a delay unit and then to the input of
a linear gate. The positive SCA output is used as an enable signal for the linear gate.
The linear gate output then connects to a multi channel analyzer (MCA), which can be
configured using the computer. A schematic sketch of the NIM modules can be found
in Fig. 6.

1 2
3 4 5

6

7

Figure 5: Main setup of the experiment. The components from left to right are the
photomultiplier (1), the scintillator (2), a mount for the aluminum shielding for the
background measurement (3), the movable mount for the stainless steel and natural
iron absorbers (4), the 57Co-source (5) and the engine drive (6). The calibration
source (7) is also visible.

2.2. Electronic Devices

In the following, the scintillator and NIM modules used for data processing are briefly
described.
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Figure 6: Schematic setup of the experiment.

Scintillator A scintillator is a device used to detect ionizing particles. In general,
two different types of scintillators are distinguished: Inorganic scintillators and organic
scintillators. In this experiment, an inorganic NaI scintillator is used to detect high-
energy photons.
Inorganic scintillators are doped semiconducting crystals. Their behavior can be ex-
plained using the band model of semiconductors. The incoming particles interact with
the crystal, transferring their energy to the atoms. As a result, electrons are lifted from
the valence band to the conduction band. When the electron relaxes back into the va-
lence band, the excess energy is emitted as a photon. In a crystal which is not doped,
this photon might have the same energy as the originally incoming particle. However,
doping a crystal locally deforms the conduction band and creates additional energy levels
an electron can occupy which are situated between the valence band and the conduction
band. When the electron relaxes from this energy level to ground state, the energy of
the emitted photon is not high enough to excite another atom. These photons can then
reach the photomultiplier. Inorganic scintillators in general have a high density which
leads to a relatively large amount of detectable photons and leads to a good resolution
in the measurement of the energy of the original signal. However, the scintillation de-
cay time is rather large, which means the resolution in time is not very good. Organic
scintillators have a better time resolution.

Photomultiplier A photomultiplier is used to convert the signal produced by a scin-
tillator into a measurable current. An optical fiber transfers the photons produced by the
scintillator directly onto a photocathode, where the photons are absorbed and electrons
are emitted via the photoelectric effect. These primary electrons are then accelerated
by an electric field and hit a dynode. Several dynodes are placed after each other and
arranged in a way that leads to very little loss of electrons between the dynodes. At
the first dynode, the impact of each primary electron leads to the emission of secondary
electrons. The number of secondary electrons depends on the applied voltage and often
lies between a factor of 3 and 10. All electrons are then accelerated to the next dynode.
As each dynode is held at a higher potential than the previous one, the process repeats,
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so that at the end a large current which is proportional to the energy of the original
signal is produced.

Main Amplifier The main amplifier is used to amplify the signal as well as change
the pulse shape. This is done by specifying a shaping time which can be set in a range of
0.5 µs and 10 µs. The amplifier determines the maximum amplitude within the shaping
time, which is then used to generate the outgoing signal. Cutting of the signal after the
shaping time is done to prevent later signals from overlapping with the long decay time
of the earlier signal, which would then lead to the registration of only one signal with
a false value for the amplitude. It is important to ensure that the maximum amplitude
is reached within the shaping time. However, long shaping times lead to long dead
times in which new signals can not be detected, thus limiting the detectable frequency
of signals. The other purpose of the main amplifier is to amplify the signal. This is done
by adjusting the gain and the coarse gain settings.
There are two outputs of the main amplifier: a unipolar and a bipolar signal. As the
energy of the original signal is proportional to the amplitude, the unipolar signal should
be chosen if determining the energy is the main goal. However, if the main interest lies
in the timing of the signal, it is advantageous to use the bipolar signal instead because
its zero-crossing can easily be determined.
For this experiment, the unipolar output was chosen.

Single Channel Analyzer A single channel analyzer (SCA) sorts incoming signals
by amplitude, which is proportional to the energy of the original signal. It is possible to
select an energy range for the incoming signal. If a signal falls into this range, a logical
signal is passed on by the SCA. It is also possible to specify a delay with which the
logical signal is generated.

Linear Gate A linear gate is an electronic module which outputs an incoming signal
only if it registers an enable signal. It can be used to analyze signals within a specific
energy range. To do so, it can be connected to the main amplifier and use the SCA
output as an enable signal. The linear gate will then pass on the signal only if it is
within the energy range specified at the SCA and block it otherwise.

Multi Channel Analyzer A multi channel analyzer sorts incoming signals by am-
plitude into channels. The channels then contain the number of signals with the corre-
sponding amplitude. The multi channel analyzer is connected to a computer. Suitable
software can be used to evaluate and illustrate the spectrum and write the count rates
to a file. After an energy calibration it is possible to assign the channel numbers to the
corresponding energies.
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3. Procedure

Calibration In order to perform an energy calibration of the MCA, a variable x-
ray source was used. The source consists of a primary 241Am source and six x-ray
fluorescent targets on a stainless steel wheel mount. The fluorescent targets used in
the calibration were Rubidium (Rb), Molybdenum (Mo), Silver (Ag), Barium (Ba) and
Terbium (Tb).
First, the SCA window was set to its maximum range. As the count rate of the 57Co
Mößbauer-source was very low, the Tb-source was placed in front of the scintillator
for the setup of the experiment. By checking the MCA output, the amplification at
the shaping amplifier was set to the maximum at which all calibration peaks were still
visible. At the same time, the oscilloscope was used to ensure that the signal was not
saturated. The final settings were a coarse gain of 100 and a gain of 14.8. The delay at
both SCA and delay unit were adjusted until the signal was centered around the middle
of the window opened by the linear gate, such that the signal was cut off symmetrically.
The final settings were a delay of 8.8 at the SCA and 3 µs at the delay unit. After the
linear gate, both sides of the peak were slightly cut off. However, it was not possible to
adjust the with of the linear gate. Instead, the shaping time at the shaping amplifier was
lowered to 0.5 µs, at which the amount of the signal which was cut off was minimized.
The final signal used as input for the MCA can be seen in Fig. 7b.

(a) Without SCA enable (b) With SCA enable

Figure 7: Final signals (yellow) observed on the oscilloscope, right after the linear gate
(see Fig. 6) without and with the enable signal of the SCA. It can be seen that the
signal is centered in the SCA window and that applying the window cuts off both sides
of the signal symmetrically. The signals in b) were directly used for further analysis
as input to the MCA.

Then, for each of the calibration sources, the spectrum was recorded at the MCA.
The measurements were stopped after ≈ 800 s which corresponds to a measurement
time where the smallest emission peak (of Rubidium) reached high counts larger than
1500 counts to be able to perform sensible Gaussian fits. The fits used for the energy
calibration (see Section 4.1) can be found in Fig. 13.
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In the next step, the windows of the SCA were set in order to isolate a neighborhood
of 14.4 keV, at which the iron peak is expected. The energy calibration resulted in a
corresponding channel of 2830 ± 160. As the Co-source had very low count rates and
the resolution of the scintillator leads to a broadening of the observed peaks, a large
window was chosen to ensure that the majority of the 14.4 keV peak was recorded. After
the window was set, its boundaries were confirmed using a calibration source with a
high count rate at the relevant energies. Unfortunately, if the lower limit of the SCA
window was too low, the MCA recorded a lot of noise in the lowest bins. In the end,
the lower limit was set as low as possible while not recording noise, and the upper limit
was set such that the window limits were symmetric around the 2830 channel at which
the 14.4 keV peak was expected. The final settings at the SCA were 1.6 for the lower
level and 2.0 for the upper level, resulting in a window of ≈ ±1000 channels around the
channel of the iron decay energy.

Background Measurements In order to estimate the attenuation caused by the
acrylic glass, a measurement over 600 s was performed both with and without acrylic
glass in the mount. The time was chosen such that the relative error on the measurement
was at about 2 %. The thickness of the acrylic glass was measured at (2.0±0.5) mm and
assumed to be equal to the acrylic glass covering the natural iron and the stainless steel.
The Compton background can be determined by performing measurements with alu-
minum sheets of varying thickness placed in front of the scintillator. First, a measure-
ment without aluminum over 200 s was performed once with stainless steel and once
without an absorber. This was done to estimate the absorption caused by the stainless
steel, as the higher energy radiation is expected not to be attenuated by the Plexiglas
shielding around the absorber. The results are 401 counts with stainless steel and 758
counts without stainless steel. Therefore, the absorption due to stainless steel absorber
can not be neglected. In fact, subtracting the Compton background without considering
stainless steel would have led to negative count rates. Thus, the Compton background
measurements were performed with stainless steel placed in the movable mount. Stain-
less steel was chosen over the iron absorber as the background corrections are especially
important for the stainless steel analysis to correctly determine the Debye-Waller factor
of the source. All measurements were performed over 600 s at a mount speed of 1 mm s−1.
Note that it does not matter at which speed the measurements are performed: The
Compton background stems from emissions at higher energies which do not cause exci-
tation in the stainless steel and thus are not affected by the velocity. The count rate in
terms of absorber thickness is expected to follow a probability density function given by
the sum of two exponential decays. While the presence of the steel does lead to lower
overall count rates, it only affects the part of the sum which does not correspond to the
Compton background. Therefore, by fitting a sum of exponential decays to the data
and extracting the coefficients, the Compton part will still be estimated correctly. The
analysis of the Compton background is detailed in Section 4.2.
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Stainless Steel and Natural Iron The spectra of stainless steel and iron were
recorded by measuring count rates at different velocities. As the motor or the software
controlling the motor had a habit of randomly stopping, every velocity was measured
for 120 s. The software was set to repeat these runs several times.
Unfortunately, it was hard to see a signal as the count rate of the Co-source was very low.
In order to maximize the count rates in the relevant region of the spectrum, stainless steel
was only measured over a range of 0.05 mm s−1 to 1.50 mm s−1 in steps of 0.05 mm s−1.
For natural iron, the spectrum has to be measured over a wider energy range, so it was not
possible to restrict the range of velocities. Instead, a larger step size of 0.2 mm s−1 was
chosen. The measurement was performed over a range of 0.02 mm s−1 to 8.00 mm s−1.

Velocity-dependent Background On the last day, the data obtained from the mea-
surement of iron clearly showed an unexpected wavy form. To investigate whether this
form is of physical origin or a velocity-dependent background effect, the acrylic glass
was placed on the mount and measured over a range of 1 mm s−1 to 8 mm s−1 in steps
of 1.75 mm s−1 over a time of 100 s at each step.

4. Data Analysis

The data analysis of the whole experiment was performed in python. If not mentioned
otherwise, the fits were conducted performing a weighted least squares minimization
using scipy.optimize.curve_fit which takes y-uncertainties of the data points into
account. The python code that was used is shown in Appendix B.

4.1. Energy Calibration

After the experiment was set up as described in Section 3, an energy calibration was
performed to find a suitable discriminator window around the expected iron decay energy
of 14.4 keV.
The emission spectra of the five different targets were plotted in absolute counts against
channels and Gaussian fits of form

G(x) = A exp
(

−(x − µ)2

2σ2

)
+ C (8)

were performed to estimate the channels of the Kα decay peaks (see Fig. 13). Although
the emitted line of each decay is described by a Lorentzian function in theory, the
fits were performed using a Gaussian model. This model has been used because the
resolution of the recorded spectrum is limited by the resolution of the scintillator. Each
line visible in the spectrum is a convolution of the Lorentzian peak of the decay itself
and the Gaussian-shaped signal of the scintillator. As the natural linewidth of the decay
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is expected much smaller than the resolution of the scintillator, the Lorentzian part of
the convolution can be neglected in this case.
Performing the fits yielded the channels of the Kα decays, visible in Fig. 13 and Table 4.
Combining these results with the known Kα decay energies of the five targets taken
from Ref. [14], an energy calibration could be performed which converts channels to
energy via a linear relation. When compared to the width of the peaks, one can see that
the uncertainties of the peak positions resulting from the Gaussian fit listed in Table 4
overestimate the accuracy of the fits. Consequently, they were not taken into account
for the linear fit used for the energy calibration. Instead, the uncertainties of the fit
result from the deviations of the data points from the linear model.

10 15 20 25 30 35 40 45 50
Energy E of the K  decays [keV]

2000

4000

6000

8000

10000

Ch
an

ne
ls

Energy calibration using the K  decay energies of known sources

K  channels
Linear calibration fit
with 2-  confidence interval
Iron decay energy: 14.4 keV

Figure 8: Energy calibration of the MCA with the given setup. The data points show
the determined channels of the Kα decays against the known energies taken from [14].
The uncertainties on the channels can be seen in Table 4 and are to small to be seen
in the plot. A linear fit was performed to obtain the linear relation between channels
and energy. The results can be seen in Eq. (9).

The linear fit yields the relation

Channel = m · E + c (9)

with

m = (215 ± 5) keV−1 (9a)
c = −260 ± 140 . (9b)
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This allows to calculate the channel Channeliron = 2830±160 at which the 14.4 keV peak
of the iron decay is expected. The uncertainties on the channel resulting from the energy
calibration are much smaller than the average width of a peak in the MCA spectrum as
can be seen for example in Fig. 13.
Additionally, the Co-source was very weak (it has surpassed more than 6 half-lives).
This is why it was decided to choose a much wider window at the discriminator around
the 14.4 keV channel to ensure that the majority of the signal is recorded by the counter.
In the end, a window of 2800 ± 1000 channels was chosen to perform the measurements
with. The size of the window in channels was verified using the Rb-source. The MCA
spectrum of Rubidium after applying the discriminator window can be seen in Fig. 14.

4.2. Estimation of the Relevant Background Effects

Calculation of the Acrylic Glass Attenuation Both absorber sheets are enveloped
by a thin layer of acrylic glass. To quantify the attenuation of the signal due to this Plex-
iglas window, two measurements with and without a Plexiglas sheet (of same thickness
as the acrylic glass that envelopes the absorber sheets) between source and scintillator
were performed. Within the chosen measurement time of t = 600 s, NP = 1963 counts
were measured with the Plexiglas absorber and N0 = 2336 counts without the Plexiglas.
As the data is acquired in absolute counts, the count rate (in counts per second [cps])
can be calculated by

Ṅ = N

t
(10)

with the corresponding Poisson error

sṄ =
√

N

t
. (11)

As expected, the relative uncertainties of the measurements lie around 2 %, which would
correspond to an absolute number of 2500 counts

√
N

N
≤ 2 % =⇒ N ≥ 2500 counts .

From these values, the measured damping factor Rmeas can be calculated to

Rmeas = ṄP

Ṅ0
= 0.84 ± 0.03 .

The uncertainty was calculated from the Poisson uncertainties by Gaussian error prop-
agation.
As the attenuation of gamma-radiation in matter follows an exponentially decreasing law
(as described in Section 1.1), the theoretically expected damping factor can be calculated
from the thickness of the Plexiglas shielding and the attenuation coefficient for a given
photon energy

Ṅ(d) = exp
(

−µ

ρ
ρd

)
· Ṅ0 = Rtheo(d) · Ṅ0 . (12)
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With the measured Plexiglas thickness of d = (0.200 ± 0.005) cm, the mass attenuation
coefficient µ/ρ = 1.101 cm2 g−1 for photons of energy Eγ = 15 keV ≈ Eiron [14] and the
Plexiglas density of ρ = 1.19 g cm−3 [14], the calculation yields Rtheo = 0.769 ± 0.005.
Both results are not compatible within their 1-σ uncertainties. This can be explained
by the fact that the mass attenuation coefficient depends on the energy of the incoming
radiation. Thus the 14.4 keV-signal is more strongly attenuated than the higher energy
radiation of the iron-decay at 122.2 keV and 136.6 keV [10]. Via Compton scattering in
the scintillator, these higher energy photons can produce signals in the that are recorded
in the selected energy window. Thus the measured count rate is higher than the expected
count rate when considering only the 14.4 keV radiation.
In the next step, the contribution of the Compton background is discussed. The mea-
sured value for the Plexiglas attenuation Rmeas is used for the count rate correction in
the following analysis because it can better describe the experimental attenuation effects.

Estimation of the Compton Background As described in Section 4.2, the iron
source does not only emit the 14.4 keV radiation but also higher energy photons at
122.2 keV and 136.6 keV [10]. The higher energy photons interact with the scintillation
material via the Compton effect and produce photons in the selected energy window that
do not stem from the 14.4 keV decay peak. This manifests in a systematically higher
count rate throughout the measurement which can not be attributed to the relevant
14.4 keV decay and is independent of the velocity at which the target is moving.
To estimate the Compton Background, aluminum shielding of various thickness was
placed in front of the scintillator. The absorption of the gamma radiation in matter
depends on the energy of the incoming particle and the thickness of the absorber. As it
follows an exponentially decreasing law with increasing absorber thickness, the superpo-
sition of two exponential decay functions with different decay constants is expected to be
visible when plotting the count rate against the thickness of the Al-shielding. This ex-
pected distribution consists of one fast decaying part, resulting from the 14.4 keV decay
and a slower decaying part, originating from the higher energy radiation. Extrapolating
this slower decaying part to an Al-thickness of 0 mm then yields the contribution of the
Compton background. A plot of the measured count rate against the thickness of the
Al-shielding is visible in Fig. 9 with the corresponding Poisson errors.
As motivated above, a fit of two exponentially decaying functions of the form

Ṅ(d) = A · exp
(

−d

τ

)
+ B · exp

(
−d

τ̃

)
(13)

was performed. The goodness of the fit is rather bad, resulting in a reduced χ2 value of
χ2

ν = 2.2, which can be explained by the partially large fluctuations of the data points
around the model and the lack of more statistics. The fit yields a Compton background
at an absorber thickness of 0 mm of

A = ṄCompton(0) = (1.61 ± 0.04) cps .
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Figure 9: Measured count rate at the scintillator for different thicknesses of aluminum
shielding placed in front of it. The values and uncertainties have been calculated using
Eqs. (10) and (11). A fit of form Eq. (13) has been performed, resulting in a reduced
χ2 value of χ2

ν = 2.2. The exponential contribution of the Compton background is
shown in red.

The uncertainties were estimated due to the fluctuations of the data points around the
model.
For further analysis, this value will be subtracted from all count rates to get an estimation
of the raw 14.4 keV signal without contribution of the Compton background. It does not
need to be corrected for the acrylic glass attenuation because the Compton background
was measured with the stainless steel absorber, which is already encased in acrylic glass.
The final correction which was applied to all count rates for further analysis then reads

Ṅ = Ṅmeas − ṄCompton
Rmeas

, (14)

with uncertainties calculated by Gaussian error propagation.
It is of note that in the fit shown in Fig. 9, the contribution of the 14.4 keV peak is already
close to zero at a aluminum thickness of approximately 2 mm. This is in agreement with
the plot in Fig. 15 which shows a transmission of the 14.4 keV line at a thickness of 2 mm
of around 2 %.
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4.3. Measurement with the Stainless Steel Absorber

After the relevant background effects were determined, the measurement with the stain-
less steel absorber was started. For velocities from −1.5 mm s−1 to 1.5 mm s−1 in steps
of 0.05 mm s−1, the counts were recorded using the counter.
As different velocities of the sledge can be translated directly to different excitation
energies, peaks in the spectrum are expected to have a negative Lorentzian shape. It
can be described by

ṄL(v; A, µ, γ, C) = Aγ

π

1
(v − µ)2 + γ2 + C , (15)

where the amplitude A is expected negative, as an absorption spectrum is observed.
Statistical effects in the measurement such as changes in the room temperature, varying
sledge velocities or the difference in solid angles caused by different distances to source
and absorber follow a Gaussian distribution. It is described by

ṄG(v; A, µ, σ, C) = A√
2πσ

exp
(

−(v − µ)2

2σ2

)
+ C . (16)

The limited resolution of the scintillator will affect the form of the absorption peaks as
well. The finally detected absorption peaks in the spectrum will thus follow a Voigt
form, which is a convolution of the Gaussian and the Lorentzian part and reads

ṄV (v; A, µ, σ, γ, C) = A ·
∫ ∞

−∞
G
(
v′; σ

)
L
(
v − µ − v′; γ

)
dv′ + C . (17)

The Voigt profile has no exact analytical representation. For the analysis, the scipy-
method scipy.special.voigt_profile was used. The spectrum of stainless steel after
having corrected for the relevant background effects using Eq. (14) are visible in Fig. 10.
As motivated above, all three model fits (see Eqs. (15) to (17)) were performed. The fit
results are listed in Table 2.

Parameters Gaussian Fit Lorentzian Fit Voigt Fit
A [cps] −0.08 ± 0.03 −0.14 ± 0.06 −0.14 ± 0.06
µ [mm s−1] 0.23 ± 0.06 0.22 ± 0.06 0.22 ± 0.06
σ [mm s−1] 0.18 ± 0.06 0 ± 170
γ [mm s−1] 0.22 ± 0.10 0.22 ± 0.11
C [cps] 0.591 ± 0.016 0.61 ± 0.02 0.61 ± 0.02

Table 2: Fit results of the stainless steel analysis for the fit functions described in
Eqs. (15) to (17). The data points and fits are shown in Fig. 10. The reduced χ2

value yields χ2
ν = 0.6 for all three fits.

The reduced χ2 value of χ2
ν = 0.6 < 1 for all three fits is rather small and indicates very

large uncertainties of the data points compared to the fluctuations around the model
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Figure 10: Results of the measurement with the stainless steel absorber during an overall
data taking period of 7.5 h, resulting in a net measurement time of approximately 450 s
per data point. The count rate correction according to Eq. (14) has already been
performed. Fits of Gaussian (Eq. (16)), Lorentzian (Eq. (15)) and Voigt (Eq. (17))
form were performed and are visible as well. As the Lorentzian and the Voigt fit differ
only slightly, the difference between both models is not well visible. The fit results
can be taken from Table 2. The reduced χ2 value yields χ2

ν = 0.6 for all three fits.

functions. This is consistent with Fig. 10. All in all, it can be said that the data is not
sufficient to see differences between the different model functions, as all the parameter
values are compatible within their uncertainties.

4.3.1. Isomer Shift

The deviation of the absorption minimum (µ ̸= 0) from the zero velocity is caused by
the isomer shift and can be used to draw conclusions about the chemical composition
of the absorber (see Section 1). The energy shift corresponding to this velocity can be
calculated using the Doppler effect (see Section 1) and reads

∆E = µ

c
Eiron , (18)

where µ is the sledge velocity at the absorption minimum and Eiron = (14.412 95 ±
0.000 31) keV [1] is the energy of the 14.4 keV iron emission line. As the fit uncertainties
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are rather large, all three profiles yield the same result. The isomer shift of the stainless
steel absorber can be calculated to

Eiso = (11 ± 3) neV ,

with the uncertainties calculated by Gaussian error propagation. Again this value has a
large uncertainty, resulting in a relative uncertainty of 27 %. As the uncertainties only
depend on the fit uncertainties, which are much larger than the uncertainty of the iron
decay energy, longer measurement times and a stronger source could significantly reduce
the relative error. As no literature value for this specific absorber is given, no comparison
can be made.

4.3.2. Calculation of the Effective Absorber Thickness

To estimate the factor of recoilless emissions from the source, described by the Debye-
Waller factor fS of the source, the dimensionless quantity TA, the effective absorber
thickness, needs to be determined. It can be calculated using

TA = fAnAβσ0dA , (19)

where the used quantities are the following [14]:

fA(20 ◦C) = 0.8 : Debye-Waller factor of the absorber
nA : number of iron atoms per m3

β = 0.022 : fraction of 57Fe in the isotope mixture
σ0 : resonant absorption cross section

dA = 25 µm : absorber thickness .

All following uncertainties were calculated using Gaussian error propagation.
The number nA of iron atoms per m3 can be determined from the Avogadro constant
NA, the iron content in the absorber p = 0.70 ± 0.05 [14], the density of iron ρiron =
7.874 g cm−3 [8] and the molar mass of iron miron = (55.845 ± 0.002) g mol−1 [13] with

nA = p
ρironNA
miron

. (20)

The calculation yields
nA = (5.9 ± 0.4) · 1028 m−3 .

Using Eiron = hc/λiron the resonant absorption cross section σ0 can be calculated with

σ0 = 1
2π

(
hc

Eiron

)2(2Ie + 1
2Ig + 1

)
1

1 + α
, (21)

as given in [4]. In the above equation, Ie = 3/2 and Ig = 1/2 are the contributing
spin states of the excited state and the ground state, respectively, Eiron = (14.412 95 ±
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0.000 31) keV [1] is the excitation energy and α = 8.55±0.12 [1] the conversion coefficient.
Calculating the cross section yields

σ0 = (2.47 ± 0.03) · 10−22 m2 .

Combining these results and the other quantities as described in Eq. (19), the effective
absorber thickness TA can be calculated to

TA = 6.5 ± 0.5 ,

which has a relative uncertainty of 7.7 %. The largest contribution to this uncertainty
stems from the iron content p in the absorber which itself has a large relative uncertainty.

4.3.3. Debye-Waller Factor of the Source

With the effective absorber thickness TA and the obtained fit results, the Debye-Waller
factor fS of the source can be calculated using Eq. (5) as explained in Section 1.
The factor (Ṅ(∞)−Ṅ(0))/Ṅ(∞) describes the depth of the absorption peak, normalized
by the expected count rates at infinite velocities. So Ṅ(0) is not the count rate at zero
sledge velocity but the one in the absorption minimum which is shifted by the isomer
shift µ. The expected count rate at infinite velocities is then given by the vertical offset
C of the fit. With these results, Eq. (5) can be written as

fS = C − Ṅ(µ)
C

1
1 − exp

(
−1

2TA
)

J0
(

1
2 iTA

) . (22)

The uncertainties can be calculated using Gaussian error propagation

sfS =

√√√√(∂fS
∂C

sC

)2
+
(

∂fS

∂Ṅ(µ)
sṄ(µ)

)2

+
(

∂fS
∂TA

sTA

)2
(23)

with

∂fS
∂C

= −Ṅ(µ)
C2

1
1 − exp

(
−1

2TA
)

J0
(

1
2 iTA

) (23a)

∂fS

∂Ṅ(µ)
= − 1

C

1
1 − exp

(
−1

2TA
)

J0
(

1
2 iTA

) (23b)

∂fS
∂TA

= −C − Ṅ(µ)
2C

e− 1
2 TA

J0
(

1
2 iTA

)
+ iJ1

(
1
2 iTA

)
(
1 − exp

(
−1

2TA
)

J0
(

1
2 iTA

))2 . (23c)

The uncertainty sC is obtained directly from the fits. The uncertainties of the fit func-
tions evaluated at their minima sṄ(µ) can be estimated using the uncertainty of the
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minimum position sµ by determining the count rate difference Ṅ(µ + sµ) − Ṅ(µ). The
Bessel-functions J0 and J1 have been calculated in python, using the scipy.special.jv
method. Performing the calculations yields a result of

fS, G = 0.39 ± 0.03 ,

fS, L = 0.43 ± 0.04 ,

fS, V = 0.43 ± 0.04

for the Debye-Waller factors, determined with the three different fit functions. As ex-
pected from previous results, all three values are compatible within their 1-σ uncertain-
ties which again shows that the different analysis methods do not have a major impact
on the results with the available data. More data would have to be taken to differentiate
between the analysis methods. As no literature value for comparison is available, only
the qualitative assessment can be made that a percentage of around 40 % of recoilless
emissions from the source seems reasonable.

4.3.4. Lifetime of the 14.4 keV state in 57Fe

Normally, the known relation τ = ℏ/Γnat. holds between the natural linewidth Γnat. and
the lifetime of a state τ . Due to the absorption and reemission of the radiation in the
absorber, the measured linewidth Γmeas. appears larger than the natural linewidth is.
This is due to an overlap of the absorption and emission spectrum. To correct for this
relative line broadening, a correction factor W needs to be considered, as derived in [2,
4, 6]. The results of a numerical approach are shown in Fig. 11.
It can be seen that for effective source- and absorber thicknesses TA = TS = 0, the
relative line broadening is Γmeas./Γnat. ≈ 2. In other words, the observed absorption line
has twice the natural linewidth.
To correct for this effect, the effective source thickness TS needs to be calculated. As in
Eq. (19), the relation

TS = fSnSβσ0dS (24)

holds with fS the Debye-Waller factor of the source as calculated in Section 4.3.3, nS =
nA as in Eq. (20), β = 1, σ0 from Eq. (21) and dS = O(100 Å) [14].
Performing the calculations with the results of the different fit functions yields

TS, G = 0.057 ± 0.004 ,

TS, L = 0.063 ± 0.005 ,

TS, V = 0.063 ± 0.005

and therefore TS ≈ 0. In this case, Visscher’s formula gives an analytic approximation
of the relative line broadening [2, 4]. It describes the relative line broadening using a
second order polynomial for 4 ≤ TA ≤ 10

W = Γmeas./Γnat. ≈ 2
(
1.01 + 0.145 TA − 0.0025 T 2

A

)
. (25)
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Figure 11: Relative line broadening Γmeas./Γnat. as a function of the effective absorber
thickness TA for different effective source thicknesses TS, taken from [6].

As TA = 6.5 ± 0.5 (see Section 4.3.2), the relation holds.
Using Gaussian error propagation, the correction factor can be calculated to

W = 3.68 ± 0.11 .

Applying this correction, the natural linewidth of the absorption peak can be estimated
using the width of the three different model functions. It holds that

Γmeas., G = 2
√

2 ln(2)σ = (0.43 ± 0.14) mm s−1 ,

Γmeas., L = 2γL = (0.4 ± 0.2) mm s−1 ,

Γmeas., V = 2γV = (0.4 ± 0.2) mm s−1 ,

where the width of the Voigt function is only determined by the Lorentzian part to
eliminate the statistical broadening effects described by the Gaussian part. The natural
linewidth can then be calculated using the correction described in Eq. (25). Using
Eq. (18) to convert the unit to energy in neV results in values for the natural linewidth
of

Γnat., G = (5.6 ± 1.9) neV ,

Γnat., L = (6 ± 3) neV ,

Γnat., V = (6 ± 3) neV .
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The lifetime of 57Fe can then be calculated using τ = ℏ/Γnat.,

τG = (120 ± 40) ns ,

τL = (120 ± 60) ns ,

τV = (120 ± 60) ns .

Comparing these results to the literature value of τ(57Fe) = 141 ns [3] shows a good
accordance within the 1-σ uncertainties of the values. However, it has to be said that
the uncertainties are very large, resulting in relative uncertainties of up to 50 %. As
a consequence the good accordance with the literature value is not surprising. As the
major contribution to these uncertainties originates directly from the fits (see Fig. 10,
compare with uncertainties in Table 2), the uncertainties for the lifetime of 57Fe could
have significantly been reduced by taking more data.

4.4. Measurement with the Natural Iron Absorber

As with the stainless steel absorber, an analysis with an absorber made out of natural
iron was performed to investigate its hyperfine splitting. Both absorbers are expected
to be manufactured in the same way, so the enveloping layer of Plexiglas is expected to
have the same thickness. As a consequence, the same background considerations can be
made, resulting in the background correction Eq. (14) as used before.
As argued in Section 1.6, six distinct absorption peaks are expected, caused by the ex-
cited transitions shown in Fig. 3. The recorded spectrum is expected to show symmetric
absorption peaks with respect to a common energy offset caused by the isomer shift.
The energies of the expected absorption spectrum are listed in Table 1. Translated to
the recorded spectrum in count rates against velocities, this means that six dips are
expected, symmetric to a common horizontal offset.
The spectrum was recorded in an overall data taking period of 18.2 h, resulting in a net
measurement time of ≈ 820 s per data point. It is shown in Fig. 12 after having applied
the relevant background corrections according to Eq. (14). Unfortunately due to the
weak source and the lack of more statistics, only the two innermost of the expected six
absorption peaks are visible. For velocities of |v| ≥ 2 mm s−1, huge fluctuations from the
baseline occur. Unfortunately it was not possible to find an explanation for those.
To investigate the hyperfine splitting and the isomer shift for the iron target, again fits of
Gaussian (Eq. (16)), Lorentzian (Eq. (15)) and Voigt (Eq. (17)) form were performed to
describe the absorption peaks. As motivated in Section 1.6, the symmetry-condition was
added as a constraint for the fit function, reducing the number of free parameters and
increasing the accordance with the theoretically expected behavior. The model functions
fitted to the selected data points were of the form

Model(v) = A · F (v − µ − µα; . . .)
+ A · F (v − µ + µα; . . .) + C,

(26)
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Figure 12: Results of the measurement with the iron absorber during an overall data
taking period of 18.2 h, resulting in a net measurement time of ≈ 820 s per data point.
The count rate correction according to Eq. (14) has already been performed. Fits of
Gaussian (Eq. (16)), Lorentzian (Eq. (15)) and Voigt (Eq. (17)) form were performed,
taking the symmetry conditions described in Section 1.6 and Eq. (26) into account.
The fit results can be taken from Table 3. The reduced χ2 value yields χ2

ν = 0.4 for
all three fits.

where F denotes Gaussian, Lorentzian or Voigt functions of the form described in
Eqs. (15) to (17). The argument v − µ ± µα enforces the symmetry constraints of a
common offset corresponding to the isomer shift µ and the velocity µα at which the first
(and only visible) hyperfine transition occurs. The fit results are listed in Table 3.

4.4.1. Isomer Shift

As explained in Section 4.3.1, the isomer shift can be computed via Eq. (18) from the
corresponding sledge velocity. With a fit function of a form described in Eq. (26), the
velocity of the isomer shift directly corresponds to the parameter µ in the performed fits,
the values of which are listed in Table 3. Using these results and Eq. (18), the isomer
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Parameters Gaussian Fit Lorentzian Fit Voigt Fit
A [cps] −0.059 ± 0.019 −0.11 ± 0.05 −0.11 ± 0.12
µ [mm s−1] 0.31 ± 0.04 0.30 ± 0.04 0.30 ± 0.04
µα [mm s−1] 0.87 ± 0.04 0.87 ± 0.05 0.87 ± 0.06
σ [mm s−1] 0.14 ± 0.04 0 ± 20
γ [mm s−1] 0.18 ± 0.08 0.2 ± 0.4
C [cps] 0.615 ± 0.018 0.64 ± 0.03 0.64 ± 0.06

Table 3: Fit results of the iron analysis for the fit functions Eqs. (15) to (17), using the
symmetry constraints as presented in Eq. (26). The data points and fits are visible in
Fig. 12. The reduced χ2 value yields χ2

ν = 0.4 for all three fits.

shift of the iron target can be calculated to

Eiso, G = (14.8 ± 1.8) neV ,

Eiso, L = (15 ± 2) neV ,

Eiso, V = (15 ± 2) neV .

4.4.2. Calculation of the Magnetic Field Strength at the Nucleus

If it had been possible to see three peaks to each side, the fit of the iron spectrum
would have resulted the energy of the isomer shift Eiso and the absolute distances of the
dips to Eiso. Due to the fit constraints, there would have been three different energy
distances to Eiso, which in the following will be referred to as ∆Eα, ∆Eβ and ∆Eγ ,
where ∆Eα ≤ ∆Eβ ≤ ∆Eγ . The relation of these values to the magnetic moments of
the excited state µe and the ground state µg as well as the magnetic field at the nucleus
B can be calculated from Eq. (7). This results in

∆Eα = (1
3µe + µg) B , (27a)

∆Eβ = (−1
3µe + µg) B , (27b)

∆Eγ = (−µe + µg) B . (27c)

These equations can now be used to determine µe and B from the fits as well as the
literature value for µg. Unfortunately, it was only possible to fit the two innermost peaks,
which correspond to ∆Eα. As a result, ∆Eβ and ∆Eγ are unknown and only Eq. (27a)
can be used. As Eq. (27a) has three unknown variables, they can not be determined
uniquely. Instead, in the following, a literature value for µe as well as µg will be used
to determine the magnetic field strength B at the nucleus. This is done by rearranging
Eq. (27a),

B = ∆Eα

(1/3)µe + µg
. (28)
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The uncertainty is estimated by Gaussian error propagation,

sB =

√√√√( 1
µe/3 + µg

s∆Eα

)2

+
(

1
3

∆Eα

(µe/3 + µg)2 sµe

)2

+
(

∆Eα

(µe/3 + µg)2 sµg

)2

. (29)

As before, ∆Eα is calculated using Eq. (18) and Gaussian error propagation. The
magnetic moments µg = 0.090 44 ± 0.000 07 µN and µe = −0.1549 ± 0.0002 µN are taken
from “Table of nuclear magnetic dipole and electric quadrupole moments” [11], and
µN = 3.152 45 · 10−8 eV T−1 [9] is the nuclear magneton. For the three fits, the results
for the magnetic field are

BG = (34.2 ± 1.5) T ,

BL = (34.0 ± 1.8) T ,

BV = (34 ± 2) T .

The literature value fo the magnetic field strength at the nucleus at a temperature of
300 K is given in Ref. [3] as Blit = 33.0 T. The literature value is within one sigma of
the magnetic field strength calculated from the measurement for all three fit functions,
which indicates good agreement of the data with the literature value.
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5. Summary and Discussion

5.1. Results

In the first part of the experiment, the multi channel analyzer was calibrated using five
sources with known spectra. The channel to energy conversion was determined to

Channel = (215 ± 5) keV−1 · E − (260 ± 140)

and was used to set the discriminator window.
Next, the effects contributing to the background were investigated. The damping factor
of acrylic glass was determined at

Rmeas = 0.84 ± 0.03 ,

which is not compatible within one sigma with the theoretical dampening factor

Rtheo = 0.769 ± 0.005

calculated from the thickness of the acrylic glass. The deviation can be explained by the
influence of higher-energy emission lines of the Co-source, for which the mass attenuation
coefficient used theoretical calculation does not apply.
The measurement of the Compton background was performed with the stainless steel
absorber placed in the mount. As the stainless steel absorber is also encased in acrylic
glass, the result for the Compton background determined at

ṄCompton = (1.61 ± 0.04) cps

already incorporates the attenuation due to the acrylic glass.
The spectra of both stainless steel and natural iron were recorded by measuring count
rates in dependence on the velocity with which the absorbers were moved. The back-
ground was subtracted from the spectra, and the absorption dips visible in the spectra
were fitted using a Gaussian, a Lorentzian and a Voigt profile.
The isomer shift of stainless steel was determined at

Eiso = (11 ± 3) neV .

The effective absorber thickness of stainless steel was calculated to

TA = 6.5 ± 0.5 ,

which could then be used to determine the Debye-Waller factor of the source describ-
ing the fraction of recoilless emissions from the source. The Debye-Waller factor was
calculated from all three fit functions, resulting in

fS, G = 0.39 ± 0.03 ,

fS, L = 0.43 ± 0.04 ,

fS, V = 0.43 ± 0.04 .
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All of these results are compatible with each other within their one sigma uncertainties.
Next, the lifetime of the 14.4 keV state of 57Fe was determined, resulting in

τG = (120 ± 40) ns ,

τL = (120 ± 60) ns ,

τV = (120 ± 60) ns

for the three fit functions. The literature value of 141 ns [3] is well within one sigma of
all of the results. However, the relative errors of 33 % and 50 % are rather large.
The isomer shift of natural iron was determined at

Eiso, G = (14.8 ± 1.8) neV ,

Eiso, L = (15 ± 2) neV ,

Eiso, V = (15 ± 2) neV

for the three fit functions.
Unfortunately, only the two innermost peaks of the six expected peaks were visible
in the data. As a consequence, it was not possible to determine both the magnetic
moment µe of the excited state and the magnetic field strength B at the nucleus from
the measurement. Instead, a literature value for µe was used to determine B from the
data, resulting in

BG = (34.2 ± 1.5) T ,

BL = (34.0 ± 1.8) T ,

BV = (34 ± 2) T .

All three results are in good agreement with the literature value at a temperature of
300 K of Blit = 33.0 T [3].

5.2. Discussion

The probably largest source of errors in this measurement was the weak Co-source. As
the count rate emitted by the source was very low, it would have been necessary to
drastically increase the measurement time in order to obtain results with acceptable
uncertainties. In the time given for this experiment, it was not possible to see a clear
spectrum for either stainless steel or natural iron.
In the spectrum of natural iron, only the two innermost peaks could be identified. In-
stead, an unclear wavy form of the data was visible. A measurement was performed to
investigate a possible velocity-dependent background effect, but did not show a statisti-
cally significant shape. Thus, a velocity-dependent background could not be confirmed.
Another possible explanation for this wavy form is an error in the execution of the ex-
periment: As the count rate was very low and no spectrum was visible after the first
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overnight measurement of stainless steel, the width of the discriminator window was
increased drastically to maximize the count rate. However, it is possible that the final
window was too large and caused the outer two peaks to each side of the spectrum of
natural iron to blend into each other. This might have resulted in the unidentifiable
wavy shape, and explains why the shape is roughly symmetric around the isomer shifted
14.4 keV emission line. It is also possible that the shape is caused by contamination of
the iron target or quite simply due to statistical fluctuations. However, these possible
explanations are unlikely, as the do not explain the symmetry of the wave shape.
It is of note that in the fits using the Voigt profile to both spectra the parameter σ
corresponding to the width of the Gaussian contribution is zero with a large uncertainty
((0 ± 170) mm s−1 for stainless steel and (0 ± 20) mm s−1 for natural iron). This means
that the Gaussian part does not contribute to the fit, and indicates that there is not
enough data to distinguish between the natural linewidth and the Gaussian broadening
effects. The fact that all results calculated from the fits are compatible when comparing
different fit functions also shows that not enough data was taken in order to draw a
conclusion of which fit function is most suited to evaluate the spectra. The low values
for the reduced χ2 value of the fits (0.64 and 0.4) indicate too large errors. These could
have been reduced by increasing the time measured at each point.
Nevertheless, it was possible to determine the lifetime of the 14.4 keV state of 57Fe as well
as the magnetic field strength at the nucleus in good agreement with literature values.
However, the results for the lifetime have a large relative uncertainty, which is directly
caused by the uncertainties stemming from the fit.
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Energy Calibration
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Figure 13: Decay spectra of the five different sources used for the energy calibration
visible in Fig. 8. The data used for the Gaussian fits of form Eq. (8) is shown in
red. The optimum values for µ and σ are shown in the legend as well as the expected
energy of each decay.
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Source µFit σFit EKα [keV]
Rubidium 2521.4 ± 0.8 364 ± 8 13.37
Molybdenum 3583.9 ± 0.8 408 ± 4 17.44
Silver 4562.9 ± 0.5 480 ± 9 22.10
Barium 6477.8 ± 0.4 595 ± 3 32.06
Terbium 9292.3 ± 0.9 682 ± 8 44.23

Table 4: Fit results for the expectation value µFit and the standard deviation σFit of the
Gaussian fits performed in Fig. 13 for all five calibration sources. The expected decay
energies taken from [14] are visible as well.
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Figure 14: Spectrum of the Rubidium source on the MCA, taken after the discriminator
settings were applied according to Section 4.1. The expected energy of 14.4 keV is
shown in red, the window chosen on the discriminator in light red. As the data points
lie within the expected range, the discriminator calibration was successful.
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Transmission of Aluminum

Figure 15: Transmission of radiation at different energies through different thicknesses
of aluminum shielding, taken from [14].
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Lab Notes
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B. Python Code

Energy Calibration
1 # -*- coding : utf -8 -*-
2

3 import numpy as np
4 import pandas as pd
5 # import matplotlib . pyplot as plt
6 # import scipy
7 # import scipy.odr as s_odr
8 import mymodules . usefultools as mmu
9 # import mymodules . calculate as mmc

10 # import mymodules . measure as mmm
11 # import mymodules . optimize as mmo
12 import mymodules . functions as mmf
13 import mymodules .plot as mmp
14

15 # verbose = True
16 # si_format = False
17 # plot = True
18 # draft = False
19 save_images = False
20 # write_data = False
21

22

23 # %%
24

25 targets = ["Rb", "Mo", "Ag", "Ba", "Tb"]
26 targets_long = [" Rubidium ", " Molybdenum ", " Silver ", " Barium ", " Terbium "]
27 alpha_energies = [13.37 , 17.44 , 22.1 , 32.06 , 44.23]
28

29

30 # %%
31

32 data = {}
33 for target in targets :
34 data[ target ] = pd. read_csv (f"../ data/ calibration /{ target .lower ()}_800

.TKA", header =1, names =[" counts "])
35

36

37 # %%
38

39 legend_loc = [2, 2, 1, 1, 2]
40

41 fit_range = [[2000 , 3000] ,
42 [2900 , 4300] ,
43 [4000 , 5150] ,
44 [5500 , 7400] ,
45 [8400 , 10300]]
46 # fit_range = [[1500 , 2500] ,
47 # [2400 , 3400] ,
48 # [3150 , 4300] ,
49 # [4300 , 6200] ,
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50 # [6900 , 8400]]
51

52 alpha_bins = []
53 alpha_bins_err = []
54 alpha_width = []
55 alpha_width_err = []
56

57 for target_i , target in enumerate ( targets ):
58

59 # target_i = 4
60 # target = targets [ target_i ]
61

62 data_target = data[ target ]
63

64 data_target_bins = np. arange (1, len( data_target [" counts "]) + 1)
65 data_target_counts = data_target [" counts "]
66

67 fig , ax = mmp. make_fig (1, 1, grid=True , textsize =16)
68

69 mmp.plot(ax , data_target_bins , data_target_counts , label="Decay
spectrum ")

70 mmp.plot(ax ,
71 data_target_bins [ fit_range [ target_i ][0]: fit_range [ target_i

][1]] ,
72 data_target_counts [ fit_range [ target_i ][0]: fit_range [ target_i

][1]] ,
73 label="Data used for the gaussian fit",
74 color="tab:red")
75

76 out = mmp.fit(mmf. gauss_poly_0 ,
77 data_target_bins [ fit_range [ target_i ][0]: fit_range [

target_i ][1]] ,
78 data_target_counts [ fit_range [ target_i ][0]: fit_range [

target_i ][1]] ,
79 ax=ax , x_range = data_target_bins , show_results =[1, 2],
80 # kwargs_plot ={" linewidth ": 4},
81 label=" Gaussian fit", color="black")
82

83 alpha_bins . append (out [0][1])
84 alpha_bins_err . append (out [1][1])
85 alpha_width . append (out [0][2])
86 alpha_width_err . append (out [1][2])
87

88 mmp. add_to_legend (ax , rf"K$_\alpha ({ target })$ = { alpha_energies [
target_i ]} keV")

89

90 ax. set_title (f"Decay spectrum of { targets_long [ target_i ]}")
91 ax. set_xlabel (" Channels ")
92 ax. set_ylabel (" Counts per Channel ")
93 ax. set_xlim (0, len( data_target_bins ))
94 ax. set_ylim (0, 13000)
95

96 mmp. legend (ax , loc= legend_loc [ target_i ], textsize =16)
97 # break

42



FP-II Mößbauer-Effect

98 if save_images is True:
99 mmp. save_fig (fig , path="../ report / figures ", name=f"

decay_spectrum_ { targets_long [ target_i ]. lower ()}", extension ="pdf")
100

101

102 # %%
103

104 mmu. print_to_table ( targets_long ,
105 mmu. sc_round (alpha_bins , alpha_bins_err , SI=True),
106 mmu. sc_round ( alpha_width , alpha_width_err , SI=True),
107 alpha_energies ,
108 SI=True ,
109 environment =True ,
110 header =True ,
111 copy=False
112 )
113

114

115 # %%
116

117 fig , ax = mmp. make_fig (grid=True)
118

119 mmp.plot(ax ,
120 alpha_energies , alpha_bins ,
121 y_err= alpha_bins_err ,
122 config =" scatter ",
123 s=100 ,
124 label=r"K$_\ alpha$ channels ")
125

126 out_energy_calibration = mmp.fit(mmf.poly_1 ,
127 alpha_energies , alpha_bins ,
128 conf=True ,
129 show_results =False ,
130 print_results =True ,
131 color="black",
132 x_range =np. linspace (10, 50, 100) ,
133 label=" Linear calibration fit\nwith 2-$

\\ sigma$ confidence interval ",
134 ax=ax)
135

136 ax. set_title (r" Energy calibration using the K$_\ alpha$ decay energies of
known sources ")

137 ax. set_xlabel (r" Energy $E$ of the K$_\ alpha$ decays [keV]")
138 ax. set_ylabel (" Channels ")
139

140 ax. set_xlim (10, 50)
141

142 E = 14.4 # keV
143 bin_14_4 = mmf. poly_1 (E, * out_energy_calibration [0])
144 bin_14_4_err = np.sqrt ((E * out_energy_calibration [1][0]) **2 +

out_energy_calibration [1][1]**2)
145 factor = 5
146

147 # ax. axhline ( bin_14_4 )
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148 # ax. axhline ( bin_14_4 + factor * bin_14_4_err )
149 # ax. axhline ( bin_14_4 - factor * bin_14_4_err )
150 ax. axvline (E, color="tab:red", label="Iron decay energy : 14.4 keV")
151

152 mmp. legend (ax , loc =4)
153

154 if save_images :
155 mmp. save_fig (fig , path="../ report / figures ", name=" energy_calibration "

, extension ="pdf")
156

157 print(bin_14_4 , bin_14_4_err )
158 print( bin_14_4 - factor * bin_14_4_err )
159 print( bin_14_4 + factor * bin_14_4_err )
160 print( bin_14_4 / len( data_target_bins ) * 10 - factor * bin_14_4_err / len

( data_target_bins ) * 10)
161 print( bin_14_4 / len( data_target_bins ) * 10 + factor * bin_14_4_err / len

( data_target_bins ) * 10)
162

163

164 # %%
165

166 def energy_from_bins (bins):
167 return (bins - out_energy_calibration [0][1]) / out_energy_calibration

[0][0]
168

169

170 # energy spectrum after window was applied . The source was the Rb source
for calibration

171 data_cut = pd. read_csv ("../ data/ calibration /14 _4_final_window_applied .TKA
", header =1, names =[" counts "])

172

173 data_cut_bins = np. arange (1, len( data_cut [" counts "]) + 1)
174 data_cut_counts = data_cut [" counts "]
175

176 fig , ax = mmp. make_fig (grid=True)
177

178 x = energy_from_bins ( data_cut_bins )
179 y = data_cut_counts
180

181 mmp.plot(ax , x, y, label=" Energy spectrum after discriminator ")
182

183 mmp.plot(ax , 14.4 , None , x_err =[[ energy_from_bins ( bin_14_4 - 1000) -
14.4] , [14.4 - energy_from_bins ( bin_14_4 + 1000) ]], color="tab:red",
config ="vspan", label=" Expected window around 14.4 keV")

184 # ax. axvline ( energy_from_bins ( bin_14_4 - factor * bin_14_4_err ), color ="
tab:red ")

185 # ax. axvline ( energy_from_bins ( bin_14_4 + factor * bin_14_4_err ), color ="
tab:red ")

186

187 ax. set_title (" Verification of the Discriminator Window ")
188 ax. set_xlabel (r" Energy $E$ [keV]")
189 ax. set_ylabel (" Counts per Interval ")
190 ax. set_xlim (np.min(x), np.max(x))
191 ax. set_ylim (0, 60)
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192

193 mmp. legend (ax , loc =1)
194

195 if save_images :
196 mmp. save_fig (fig , path="../ report / figures ", name="

spectrum_after_discriminator ", extension ="pdf")

Compton Background
1 # -*- coding : utf -8 -*-
2

3 import numpy as np
4 import pandas as pd
5 import matplotlib . pyplot as plt
6 # import scipy
7 # import scipy.odr as s_odr
8 import mymodules . usefultools as mmu
9 # import mymodules . calculate as mmc

10 # import mymodules . measure as mmm
11 # import mymodules . optimize as mmo
12 import mymodules . functions as mmf
13 import mymodules .plot as mmp
14

15 # verbose = True
16 # si_format = False
17 # plot = True
18 # draft = False
19 # save_images = False
20 # write_data = False
21

22

23 # %%
24

25 # sum f two exponential decays withOUT constants
26 def f_exp_decay_sum_of_2 (t, A, tau , B, gamma):
27 t = np.array(t)
28 return A * np.exp(-t / tau) + B * np.exp(-t / gamma)
29

30

31 def f_exp_decay_sum_of_2_p0 (x, y, tau_lit =1):
32 return np.array ([y[0],
33 tau_lit ,
34 y[0],
35 tau_lit ])
36

37

38 exp_decay_sum_of_2 = mmf. fit_function (
39 f= f_exp_decay_sum_of_2 ,
40 p0= f_exp_decay_sum_of_2_p0 ,
41 bounds =([-np.inf , 0, -np.inf , 0], [np.inf , np.inf , np.inf , np.inf ]),
42 # f_err= f_exp_decay_err ,
43 description ="sum of two exponential decays ",
44 params =["A", "tau", "B", "gamma"],

45



FP-II Mößbauer-Effect

45 params_tex =["A", "\\ tau", "B", "\\ gamma"],
46 formula ="A exp(-t / tau) + B exp(-t / gamma)",
47 formula_tex ="A \\ cdot \\ exp {{(-t / \\ tau)}} + B \\ cdot \\ exp {{(-t /

\\ gamma)}}",
48 docstring = ’’’
49 usage: y = exp_decay (x, A, tau , B, gamma)
50 ’’’
51 )
52

53

54 # %%
55

56 data = pd. read_csv ("../ data/ compton_background /
moessbauer_compton_background .txt", header =0, delimiter ="\t", decimal =
",", names =[" velocity ", "time", " counts "])

57 data["time"] = data["time"] / 1000 # time in s
58

59 cps = []
60 cps_err = []
61 for i in range(int(len(data["time"]) / 6)):
62 cps. append (data[" counts "][6 * i:6 * i + 6]. sum () / data["time"][6 * i

:6 * i + 6]. sum ())
63 cps_err . append (np.sqrt(data[" counts "][6 * i:6 * i + 6]. sum ()) / data[

"time"][6 * i:6 * i + 6]. sum ())
64

65

66 # %%
67

68 absorber = [0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 0.22 , 0.44 ,
0.72 ,

69 2, 2.5, 3]
70 # counts = [1318 , 1011 , 950, 952, 964, 840, 798, 898, 837, 818, 789, 681,

733,
71 # 703, 1133 , 1118 , 988,
72 # 944, 846, 910]
73 # absorber = [0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 0.22 ,

0.44 , 0.72]
74 # counts = [1318 , 1011 , 950, 952, 964, 840, 798, 898, 837, 818, 789, 681,

733,
75 # 703, 1133 , 1118 , 988]
76

77 fig , ax = mmp. make_fig (grid=True)
78

79 # fig. set_dpi (100)
80

81 x = absorber
82 y = cps
83 y_err = cps_err
84 mmp.plot(ax , x, y, y_err=y_err , config =" scatter ", label=" Measured count

rate")
85

86 xx = np. linspace (0, 10.5 , 100)
87 out_compton = mmp.fit( exp_decay_sum_of_2 ,
88 x, y,
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89 y_err=y_err ,
90 p0 =[900 , 30, 300, 1],
91 bounds =True ,
92 x_range =xx ,
93 show_results =False ,
94 label=" Fitted sum of two exponential decays ",
95 ax=ax)
96

97

98 mmp.plot(ax , xx , mmf. exp_decay (xx , out_compton [0][0] , out_compton [0][1]) ,
label=" Contribution of the Compton Background ", color="tab:red")

99 mmp. add_to_legend (ax , f"A = ${mmu. sc_round ( out_compton [0], out_compton
[1], plot=True)[0]}$ cps")

100 # mmp.plot(ax , xx , mmf. exp_decay (xx , out_compton [0][2] , out_compton
[0][3]) / mmf. exp_decay (0, out_compton [0][2] , out_compton [0][3]) color
=" tab:red ")

101

102 ax. set_title (" Determination of the Compton Background ")
103 ax. set_xlabel (r" Absorber thickness $d$ of Al [mm]")
104 ax. set_ylabel ("Count rate [cps]")
105 ax. set_xlim (-0, 10.5)
106 # ax. set_ylim (1, 5)
107

108

109 mmp. legend (ax , loc =1)
110

111 # mmp. save_fig (fig , path ="../ report / figures ", name =" compton_background ",
extension =" pdf ")

112

113 plt.show ()
114

115

116 # %%
117

118 xxx = np. linspace (0, 4, 9)
119 mmu. print_to_table (xxx , 1 - mmf. exp_decay (xxx , out_compton [0][2] ,

out_compton [0][3]) / mmf. exp_decay (0, out_compton [0][2] , out_compton
[0][3]) )

120

121

122 # %%
123

124 ac = 1963 / 600 # count rate with acrylic glass
125 nac = 2336 / 600 # count rate without acrylic glass
126

127 ac_err = np.sqrt (1963) / 600
128 nac_err = np.sqrt (2336) / 600
129

130 acrylic_absorption = ac / nac
131 acrylic_absorption_err = np.sqrt ((1 / nac * ac_err )**2 + (ac / nac **2 *

nac_err )**2)
132

133 print( acrylic_absorption , acrylic_absorption_err )
134
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135 d_plexi = 0.2 # cm
136 d_plexi_err = 0.005 # cm
137 mu_per_rho = 1.101
138 rho = 1.19
139

140 T_theo = np.exp(- mu_per_rho * rho * d_plexi )
141 T_theo_err = np.sqrt (( mu_per_rho * rho * np.exp(- mu_per_rho * rho *

d_plexi ) * d_plexi_err )**2)
142 print(T_theo , T_theo_err )
143

144

145 # %%
146

147 # With acrylic glass absorption because measured with stainless steel
absorber

148 compton_cps = out_compton [0][0]
149 compton_cps_err = out_compton [1][0]
150

151 print( compton_cps , compton_cps_err )
152

153

154 # %%
155

156 data_background = {" compton_cps ": compton_cps ,
157 " compton_cps_err ": compton_cps_err ,
158 " acrylic_absorption ": acrylic_absorption ,
159 " acrylic_absorption_err ": acrylic_absorption_err }
160

161 mmu. save_json ( data_background , "./ data_compton .json")

Stainless Steel Analysis
1 # -*- coding : utf -8 -*-
2

3 import numpy as np
4 import pandas as pd
5 # import matplotlib . pyplot as plt
6 # import matplotlib as mpl
7 import scipy
8 # import scipy.odr as s_odr
9 import mymodules . usefultools as mmu

10 # import mymodules . calculate as mmc
11 # import mymodules . measure as mmm
12 # import mymodules . optimize as mmo
13 import mymodules . functions as mmf
14 import mymodules .plot as mmp
15

16 # verbose = True
17 # si_format = False
18 # plot = True
19 # draft = False
20 save_images = False
21 # write_data = False
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22

23

24 # %%
25

26 # voigt function
27 def f_voigt (x, A=1, mu=0, sigma =1, gamma =1, C=0):
28 x = np.array(x)
29 return A * scipy. special . voigt_profile ((x - mu), sigma , gamma) + C
30

31

32 voigt = mmf. fit_function (
33 f=f_voigt ,
34 description ="voigt profile ",
35 params =["A", "mu", "sigma", "gamma", "C"],
36 params_tex =["A", "\\mu", "\\ sigma", "\\ gamma", "C"],
37 )
38

39

40 # %%
41

42 data = pd. read_csv ("../ data/ stainless_steel_next_try /
moessbauer_stainless_steel .txt", header =0, delimiter ="\t", decimal =","
, names =[" velocity ", "time", " counts "])

43 data["time"] = data["time"] / 1000 # time in s
44

45 print(" Measurement time [h]:", data["time"]. sum () / 3600)
46 print("Time per point [s]:", data["time"]. sum () / len(data[" velocity "].

unique ()))
47

48

49 # %%
50

51 data_compton = mmu. read_json ("./ data_compton .json")
52 data_compton
53

54

55 # %%
56

57 velocities = np.sort(data[" velocity "]. unique ())
58 cps_raw = []
59 cps_raw_err = []
60

61 for velocity in velocities :
62 data_velocity = data[data[" velocity "] == velocity ]
63 cps_raw . append ( data_velocity [" counts "]. sum () / data_velocity ["time"].

sum ())
64 cps_raw_err . append (np.sqrt( data_velocity [" counts "]. sum ()) /

data_velocity ["time"]. sum ())
65

66 cps_raw , cps_raw_err = mmu. convert_to_array (cps_raw , cps_raw_err )
67

68

69 # %%
70
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71 cps = ( cps_raw - data_compton [" compton_cps "]) / data_compton ["
acrylic_absorption "]

72 cps_err = np.sqrt ((1 / data_compton [" acrylic_absorption "] * cps_raw_err )
**2

73 + (1 / data_compton [" acrylic_absorption "] *
data_compton [" compton_cps_err "]) **2

74 + (( cps_raw - data_compton [" compton_cps "]) /
data_compton [" acrylic_absorption "]**2 * data_compton ["
acrylic_absorption_err "]) **2)

75

76

77 # %%
78

79 fig , ax = mmp. make_fig (grid=True)
80

81 mmp.plot(ax , velocities , cps , y_err=cps_err , label="Count rate of
reemission ", config =" scatter ")

82 mmp. add_to_legend (ax , " ")
83 mmp. add_to_legend (ax , " ")
84

85 out_gauss = mmp.fit(mmf.normal ,
86 velocities , cps ,
87 y_err=cps_err ,
88 absolute_sigma =True ,
89 p0 =[ -0.2 , 0.2, 0.2, 0.6] ,
90 x_range =np. linspace (-1.6, 1.6, 200) ,
91 # show_results =1,
92 result_units =["cps", "mm s$ ^{ -1}$", "mm s$ ^{ -1}$", "

cps"],
93 print_results =True ,
94 # significant =2,
95 color=" darkgreen ",
96 kwargs_plot ={" linewidth ": 2.5} ,
97 ax=ax , label=" Gaussian fit")
98

99 out_lorentz = mmp.fit(mmf.lorentzian ,
100 velocities , cps ,
101 y_err=cps_err ,
102 absolute_sigma =True ,
103 p0 =[ -0.2 , 0.2, 0.2, 0.6] ,
104 x_range =np. linspace (-1.6, 1.6, 200) ,
105 # show_results =1,
106 print_results =True ,
107 # significant =2,
108 result_units =["cps", "mm s$ ^{ -1}$", "mm s$ ^{ -1}$",

"cps"],
109 ax=ax , color=" purple ",
110 kwargs_plot ={" linewidth ": 2.5} ,
111 label=" Lorentzian fit")
112

113 out_voigt = mmp.fit(voigt ,
114 velocities , cps ,
115 y_err=cps_err ,
116 absolute_sigma =True ,

50



FP-II Mößbauer-Effect

117 p0 =[ -0.2 , 0.2, 0.2, 0.2, 0.6] ,
118 x_range =np. linspace (-1.6, 1.6, 200) ,
119 ax=ax ,
120 # show_results =1,
121 print_results =True ,
122 # significant =2,
123 result_units =["cps", "mm s$ ^{ -1}$", "mm s$ ^{ -1}$", "

mm s$ ^{ -1}$", "cps"],
124 color="red",
125 kwargs_plot ={" linestyle ": (0, (1, 3)), " linewidth ":

2.5} ,
126 label="Voigt fit")
127

128 out = {"gauss": out_gauss ,
129 " lorentz ": out_lorentz ,
130 "voigt": out_voigt }
131

132 ax. set_title (" Reemission spectrum of stainless steel")
133 ax. set_xlabel (r" Velocity $v$ [mm s$ ^{ -1}$]")
134 ax. set_ylabel (r"Count rate [cps]")
135

136 ax. set_xlim (-1.6, 1.6)
137 ax. set_ylim (0.24 , 0.95)
138

139 mmp. legend (ax , loc =1, ncols =2)
140

141 if save_images :
142 mmp. save_fig (fig , path="../ report / figures ", name=" stainless_steel ",

extension ="pdf")
143

144

145 # %%
146

147 def energy_from_speed (E, E_err , v, v_err):
148 """
149 E in eV , v in m/s
150 [Delta E, Delta E err] output in eV
151 """
152

153 c = scipy. constants .c
154 return np.array ([E * v / c, np.sqrt ((E / c * v_err)**2 + (v / c *

E_err)**2) ])
155

156

157 e_charge = scipy. constants .e
158 E_iron = 14.41295 e3 # eV
159 E_iron_err = 0.00031 e3 # eV
160 for profile in ["gauss", " lorentz ", "voigt"]:
161 # print(out[ profile ][0][1] , out[ profile ][1][1])
162 print(f" Isomer shift calculated with { profile } profile :")
163 print(f"{ energy_from_speed (E_iron , E_iron_err , out[ profile ][0][1]*1e

-3, out[ profile ][1][1]*1e -3) *1e9} neV")
164

165
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166 # %%
167

168 f_A = 0.8 # debye waller factor of the absorber
169

170 m_iron = 55.845 # g/mol
171 m_iron_err = 0.002 # g/mol
172 rho_iron = 7.87400 # g/cm^3
173 p = 0.7
174 p_err = 0.05
175 avogadro = scipy. constants .N_A
176 n_A = p * rho_iron * avogadro / m_iron * 1e6 # number of iron atoms per

m^3
177 n_A_err = rho_iron * avogadro * np.sqrt ((1 / m_iron * p_err)**2 + (p /

m_iron **2 * m_iron_err )**2) * 1e6
178 print("n_A , n_A_err ", n_A , n_A_err )
179

180 beta = 0.022 # fraction of 57Fe in the isotope mixture
181

182 h = scipy. constants .h
183 c = scipy. constants .c
184 e_charge = scipy. constants .e
185 E_iron = 14.41295 e3 * e_charge # J
186 E_iron_err = 0.00031 e3 * e_charge # J
187 alpha = 8.55
188 alpha_err = 0.12
189 I_e = 3 / 2
190 I_g = 1 / 2
191 sigma_0 = 1 / (2 * np.pi) * (h * c / E_iron )**2 * (2 * I_e + 1) / (2 *

I_g + 1) / (1 + alpha) # calculate
192 sigma_0_err = 1 / (2 * np.pi) * (h * c)**2 * (2 * I_e + 1) / (2 * I_g +

1) * np.sqrt ((2 / ((1 + alpha) * E_iron **3) * E_iron_err )**2 + (1 /
((1 + alpha)**2 * E_iron **2) * alpha_err )**2)

193 print("sigma_0 , sigma_0_err = ", sigma_0 , sigma_0_err )
194

195 d_A = 25e-6 # m, absorber thickness from instructions
196 T_A = f_A * n_A * beta * sigma_0 * d_A # effective absorber thickness
197 T_A_err = f_A * beta * d_A * np.sqrt (( n_A * sigma_0_err )**2 + ( n_A_err *

sigma_0 )**2)
198 print("T_A , T_A_err ", T_A , T_A_err )
199

200

201 # %%
202

203 f_S_dict = {}
204 print("f_S , f_S_err ")
205 for function , profile in zip ([ mmf.normal , mmf.lorentzian , voigt], ["gauss

", " lorentz ", "voigt"]):
206 C = out[ profile ][0][ -1]
207 C_err = out[ profile ][1][ -1]
208 N_at_mu = function (out[ profile ][0][1] , *out[ profile ][0])
209 N_at_mu_err = function (out[ profile ][0][1] + out[ profile ][1][1] , *out[

profile ][0]) - function (out[ profile ][0][1] , *out[ profile ][0])
210

52



FP-II Mößbauer-Effect

211 f_S = (C - N_at_mu ) / C / (1 - np.exp ( -0.5 * T_A) * scipy. special .jv
(0, 1j * 0.5 * T_A)).real

212 f_S_err = np.sqrt(
213 (- N_at_mu / C**2 / (1 - np.exp ( -0.5 * T_A) * scipy. special .jv(0,

1j * 0.5 * T_A)) * C_err)**2 +
214 (-1 / C / (1 - np.exp ( -0.5 * T_A) * scipy. special .jv(0, 1j * 0.5

* T_A)) * N_at_mu_err )**2 +
215 (-(C - N_at_mu ) / (2 * C) * np.exp ( -0.5 * T_A) * (scipy. special .

jv(0, 1j * 0.5 * T_A) + 1j * scipy. special .jv(1, 1j * 0.5 * T_A)) / (1
- np.exp ( -0.5 * T_A) * scipy. special .jv(0, 1j * 0.5 * T_A))**2 *

T_A_err )**2
216 ).real
217 f_S_dict [ profile ] = (f_S , f_S_err )
218 print(profile , f_S , f_S_err )
219 # print(profile , mmu. sc_round (f_S , f_S_err , SI=True))
220

221

222 # %%
223

224 print("T_S , T_S_err ")
225 for profile in ["gauss", " lorentz ", "voigt"]:
226 f_S = f_S_dict [ profile ][0]
227 f_S_err = f_S_dict [ profile ][1]
228 n_S = n_A
229 n_S_err = n_A_err
230 beta = 1
231 d_S = 100e -10 # m
232 T_S = f_S * n_S * beta * sigma_0 * d_S # effective absorber

thickness
233 T_S_err = f_S * beta * d_S * np.sqrt (( n_S * sigma_0_err )**2 + (

n_S_err * sigma_0 )**2)
234 # print(profile , T_S , T_S_err )
235 print(profile , mmu. sc_round (T_S , T_S_err , SI=True))
236

237

238 # %%
239

240 W = 2 * (1.01 + 0.145 * T_A - 0.0025 * T_A **2)
241 W_err = abs (2 * (0.145 - 2 * 0.0025 * T_A) * T_A_err )
242 print("W, W_err", mmu. sc_round (W, W_err , SI=True))
243

244

245 # %%
246

247 print("FWHM:")
248

249 Gamma_G = 2 * np.sqrt (2 * np.log (2)) * out["gauss" ][0][2]
250 Gamma_G_err = abs (2 * np.sqrt (2 * np.log (2)) * out["gauss" ][1][2])
251 Gamma_L = 2 * out[" lorentz " ][0][2]
252 Gamma_L_err = abs (2 * out[" lorentz " ][1][2])
253 Gamma_V = 2 * out["voigt" ][0][3]
254 Gamma_V_err = abs (2 * out["voigt" ][1][3])
255

256 print("Gauss: ", mmu. sc_round (Gamma_G , Gamma_G_err , SI=True), "mm/s")
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257 print(" Lorentz : ", mmu. sc_round (Gamma_L , Gamma_L_err , SI=True), "mm/s")
258 print("Voigt: ", mmu. sc_round (Gamma_V , Gamma_V_err , SI=True), "mm/s")
259

260 # %%
261

262 print(" Gamma_nat :")
263

264 Gamma_G_nat = Gamma_G / W
265 Gamma_G_nat_err = np.sqrt ((1 / W * Gamma_G_err )**2 + ( Gamma_G / W**2 *

W_err)**2)
266 Gamma_L_nat = Gamma_L / W
267 Gamma_L_nat_err = np.sqrt ((1 / W * Gamma_L_err )**2 + ( Gamma_L / W**2 *

W_err)**2)
268 Gamma_V_nat = Gamma_V / W
269 Gamma_V_nat_err = np.sqrt ((1 / W * Gamma_V_err )**2 + ( Gamma_V / W**2 *

W_err)**2)
270

271 # convert to energies
272 E_iron = 14.41295 e3 # eV
273 E_iron_err = 0.00031 e3 # eV
274 Gamma_G_nat , Gamma_G_nat_err = energy_from_speed (E_iron , E_iron_err ,

Gamma_G_nat * 1e-3, Gamma_G_nat_err * 1e -3)
275 Gamma_L_nat , Gamma_L_nat_err = energy_from_speed (E_iron , E_iron_err ,

Gamma_L_nat * 1e-3, Gamma_L_nat_err * 1e -3)
276 Gamma_V_nat , Gamma_V_nat_err = energy_from_speed (E_iron , E_iron_err ,

Gamma_V_nat * 1e-3, Gamma_V_nat_err * 1e -3)
277

278 print("Gauss: ", mmu. sc_round ( Gamma_G_nat , Gamma_G_nat_err , SI=True), "eV
")

279 print(" Lorentz : ", mmu. sc_round ( Gamma_L_nat , Gamma_L_nat_err , SI=True), "
eV")

280 print("Voigt: ", mmu. sc_round ( Gamma_V_nat , Gamma_V_nat_err , SI=True), "eV
")

281

282

283 # %%
284

285 print(" Lifetime tau")
286 hbar = scipy . constants .hbar / scipy. constants .e # in eV
287

288 tau_G = hbar / Gamma_G_nat
289 tau_G_err = abs(hbar / Gamma_G_nat **2 * Gamma_G_nat_err )
290 tau_L = hbar / Gamma_L_nat
291 tau_L_err = abs(hbar / Gamma_L_nat **2 * Gamma_L_nat_err )
292 tau_V = hbar / Gamma_V_nat
293 tau_V_err = abs(hbar / Gamma_V_nat **2 * Gamma_V_nat_err )
294

295 # print (" Gauss: ", tau_G , tau_G_err )
296 # print (" Lorentz : ", tau_L , tau_L_err )
297 # print (" Voigt: ", tau_V , tau_V_err )
298 print("Gauss: ", mmu. sc_round (tau_G , tau_G_err , SI=True))
299 print(" Lorentz : ", mmu. sc_round (tau_L , tau_L_err , SI=True))
300 print("Voigt: ", mmu. sc_round (tau_V , tau_V_err , SI=True))
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Natural Iron Analysis
1 # -*- coding : utf -8 -*-
2

3 import numpy as np
4 import pandas as pd
5 # import matplotlib . pyplot as plt
6 # import matplotlib as mpl
7 import scipy
8 # import scipy.odr as s_odr
9 import mymodules . usefultools as mmu

10 # import mymodules . calculate as mmc
11 # import mymodules . measure as mmm
12 # import mymodules . optimize as mmo
13 import mymodules . functions as mmf
14 import mymodules .plot as mmp
15

16 # verbose = True
17 # si_format = False
18 # plot = True
19 # draft = False
20 save_images = False
21 # write_data = False
22

23

24 # %%
25

26 # symmetric sum of 2 gaussian functions
27 def f_sum_2_gauss (x,
28 A1=1, mu1 =0, sigma1 =1,
29 # A2=1, mu2 =0, sigma2 =1,
30 # A3=1, mu3 =0, sigma3 =1,
31 mu0 =0, C=0):
32 x = np.array(x)
33 return A1 / ( sigma1 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu0

- mu1) / ( sigma1 ))**2) + \
34 A1 / ( sigma1 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu0 +

mu1) / ( sigma1 ))**2) + \
35 C
36 # A2 / ( sigma2 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu0 -

mu2) / ( sigma2 ))**2) + \
37 # A3 / ( sigma3 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu0 -

mu3) / ( sigma3 ))**2) + \
38 # A2 / ( sigma2 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu0 +

mu2) / ( sigma2 ))**2) + \
39 # A3 / ( sigma3 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu0 +

mu3) / ( sigma3 ))**2) + \
40

41

42 sum_2_gauss = mmf. fit_function (
43 f= f_sum_2_gauss ,
44 bounds =([-np.inf , 0, 0.0001 ,
45 # -np.inf , 2, 0.001 ,
46 # -np.inf , 4, 0.001 ,
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47 -2, 0.5] ,
48 [0, 2, 10,
49 # 0, 4, 1,
50 # 0, 6, 1,
51 2, 1]) ,
52 description ="sum of 2 gaussian functions with common offset C",
53 params =["A1", "mu1", " sigma1 ",
54 # "A2", "mu2", " sigma2 ",
55 # "A3", "mu3", " sigma3 ",
56 "mu0", "C"],
57 )
58

59

60 # %%
61

62 # symmetric sum of 2 lorentz functions
63 def f_sum_2_lorentz (x,
64 A1=1, mu1 =0, gamma1 =1,
65 # A2=1, mu2 =0, gamma2 =1,
66 # A3=1, mu3 =0, gamma3 =1,
67 mu0 =0, C=0):
68 x = np.array(x)
69 return (A1 * gamma1 ) / np.pi * 1 / ((x - mu0 - mu1)**2 + gamma1 **2) +

\
70 (A1 * gamma1 ) / np.pi * 1 / ((x - mu0 + mu1)**2 + gamma1 **2) + \
71 C
72 # (A2 * gamma2 ) / np.pi * 1 / ((x - mu0 - mu2)**2 + gamma2 **2) + \
73 # (A3 * gamma3 ) / np.pi * 1 / ((x - mu0 - mu3)**2 + gamma3 **2) + \
74 # (A2 * gamma2 ) / np.pi * 1 / ((x - mu0 + mu2)**2 + gamma2 **2) + \
75 # (A3 * gamma3 ) / np.pi * 1 / ((x - mu0 + mu3)**2 + gamma3 **2) + \
76

77

78 sum_2_lorentz = mmf. fit_function (
79 f= f_sum_2_lorentz ,
80 bounds =([-np.inf , 0, 0.001 ,
81 # -np.inf , 2, 0.001 ,
82 # -np.inf , 4, 0.001 ,
83 -2, -np.inf],
84 [0, 2, 1,
85 # 0, 4, 1,
86 # 0, 6, 1,
87 2, np.inf ]),
88 description ="sum of 2 lorentz functions with common offset C",
89 params =["A1", "mu1", " gamma1 ",
90 # "A2", "mu2", " gamma2 ",
91 # "A3", "mu3", " gamma3 ",
92 "mu0", "C"],
93 )
94

95

96 # %%
97

98 # symmetric sum of 2 voigt profiles
99 def f_sum_2_voigt (x,
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100 A1=1, mu1 =0, sigma1 =1, gamma1 =1,
101 # A2=1, mu2 =0, sigma2 =1, gamma2 =1,
102 # A3=1, mu3 =0, sigma3 =1, gamma3 =1,
103 mu0 =0, C=0):
104 x = np.array(x)
105 return A1 * scipy. special . voigt_profile ((x - mu0 - mu1), sigma1 ,

gamma1 ) + \
106 A1 * scipy. special . voigt_profile ((x - mu0 + mu1), sigma1 , gamma1 )

+ \
107 C
108 # A2 * scipy. special . voigt_profile ((x - mu0 - mu2), sigma2 , gamma2 ) +

\
109 # A3 * scipy. special . voigt_profile ((x - mu0 - mu3), sigma3 , gamma3 ) +

\
110 # A2 * scipy. special . voigt_profile ((x - mu0 + mu2), sigma2 , gamma2 ) +

\
111 # A3 * scipy. special . voigt_profile ((x - mu0 + mu3), sigma3 , gamma3 ) +

\
112

113

114 sum_2_voigt = mmf. fit_function (
115 f= f_sum_2_voigt ,
116 bounds =([-np.inf , 0, 0.001 , 0.001 ,
117 # -np.inf , 2, 0.001 , 0.001 ,
118 # -np.inf , 4, 0.001 , 0.001 ,
119 -2, -np.inf],
120 [0, 2, 1, 1,
121 # 0, 4, 1, 1,
122 # 0, 6, 1, 1,
123 2, np.inf ]),
124 description ="sum of 2 voigt profiles with common offset C",
125 params =["A1", "mu1", " sigma1 ", " gamma1 ",
126 # "A2", "mu2", " sigma2 ", " gamma2 ",
127 # "A3", "mu3", " sigma3 ", " gamma3 ",
128 "mu0", "C"],
129 )
130

131 # %%
132

133 # # symmetric sum of 6 gaussian functions
134 # def f_sum_2_gauss (x,
135 # A1=1, mu1 =0, sigma1 =1,
136 # A2=1, mu2 =0, sigma2 =1,
137 # A3=1, mu3 =0, sigma3 =1,
138 # A4=1, mu4 =0, sigma4 =1,
139 # A5=1, mu5 =0, sigma5 =1,
140 # A6=1, mu6 =0, sigma6 =1,
141 # C=0):
142 # x = np.array(x)
143 # return A1 / ( sigma1 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x -

mu1) / ( sigma1 ))**2) + \
144 # A2 / ( sigma2 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu2)

/ ( sigma2 ))**2) + \
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145 # A3 / ( sigma3 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu3)
/ ( sigma3 ))**2) + \

146 # A4 / ( sigma4 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu4)
/ ( sigma4 ))**2) + \

147 # A5 / ( sigma5 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu5)
/ ( sigma5 ))**2) + \

148 # A6 / ( sigma6 * np.sqrt (2 * np.pi)) * np.exp (-1 / 2 * ((x - mu6)
/ ( sigma6 ))**2) + \

149 # C
150

151

152 # sum_2_gauss = mmf. fit_function (
153 # f= f_sum_2_gauss ,
154 # bounds =([-np.inf , -6, 0.1,
155 # -np.inf , -4, 0.1,
156 # -np.inf , -2, 0.1,
157 # -np.inf , 0, 0.1,
158 # -np.inf , 2, 0.1,
159 # -np.inf , 4, 0.1,
160 # -np.inf],
161 # [0, -4, 1,
162 # 0, -2, 1,
163 # 0, 0, 1,
164 # 0, 2, 1,
165 # 0, 4, 1,
166 # 0, 6, 1,
167 # np.inf ]),
168 # description =" sum of 6 gaussian functions with common offset C",
169 # params =[" A1", "mu1", " sigma1 ",
170 # "A2", "mu2", " sigma2 ",
171 # "A3", "mu3", " sigma3 ",
172 # "A4", "mu4", " sigma4 ",
173 # "A5", "mu5", " sigma5 ",
174 # "A6", "mu6", " sigma6 ",
175 # "C"],
176 # )
177

178

179 # # %%
180

181 # # symmetric sum of 6 lorentz functions
182 # def f_sum_2_lorentz (x,
183 # A1=1, mu1 =0, gamma1 =1,
184 # A2=1, mu2 =0, gamma2 =1,
185 # A3=1, mu3 =0, gamma3 =1,
186 # A4=1, mu4 =0, gamma4 =1,
187 # A5=1, mu5 =0, gamma5 =1,
188 # A6=1, mu6 =0, gamma6 =1,
189 # C=0):
190 # x = np.array(x)
191 # return (A1 * gamma1 ) / np.pi * 1 / ((x - mu1)**2 + gamma1 **2) + \
192 # (A2 * gamma2 ) / np.pi * 1 / ((x - mu2)**2 + gamma2 **2) + \
193 # (A3 * gamma3 ) / np.pi * 1 / ((x - mu3)**2 + gamma3 **2) + \
194 # (A4 * gamma4 ) / np.pi * 1 / ((x - mu4)**2 + gamma4 **2) + \
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195 # (A5 * gamma5 ) / np.pi * 1 / ((x - mu5)**2 + gamma5 **2) + \
196 # (A6 * gamma6 ) / np.pi * 1 / ((x - mu6)**2 + gamma6 **2) + \
197 # C
198

199

200 # sum_2_lorentz = mmf. fit_function (
201 # f= f_sum_2_lorentz ,
202 # bounds =([-np.inf , -6, 0.1,
203 # -np.inf , -4, 0.1,
204 # -np.inf , -2, 0.1,
205 # -np.inf , 0, 0.1,
206 # -np.inf , 2, 0.1,
207 # -np.inf , 4, 0.1,
208 # -np.inf],
209 # [0, -4, 1,
210 # 0, -2, 1,
211 # 0, 0, 1,
212 # 0, 2, 1,
213 # 0, 4, 1,
214 # 0, 6, 1,
215 # np.inf ]),
216 # description =" sum of 6 lorentz functions with common offset C",
217 # params =[" A1", "mu1", " gamma1 ",
218 # "A2", "mu2", " gamma2 ",
219 # "A3", "mu3", " gamma3 ",
220 # "A4", "mu4", " gamma4 ",
221 # "A5", "mu5", " gamma5 ",
222 # "A6", "mu6", " gamma6 ",
223 # "C"],
224 # )
225

226

227 # # %%
228

229 # # symmetric sum of 6 voigt profiles
230 # def f_sum_2_voigt (x,
231 # A1=1, mu1 =0, sigma1 =1, gamma1 =1,
232 # A2=1, mu2 =0, sigma2 =1, gamma2 =1,
233 # A3=1, mu3 =0, sigma3 =1, gamma3 =1,
234 # A4=1, mu4 =0, sigma4 =1, gamma4 =1,
235 # A5=1, mu5 =0, sigma5 =1, gamma5 =1,
236 # A6=1, mu6 =0, sigma6 =1, gamma6 =1,
237 # C=0):
238 # x = np.array(x)
239 # return A1 * scipy. special . voigt_profile ((x - mu1), sigma1 , gamma1 )

+ \
240 # A2 * scipy. special . voigt_profile ((x - mu2), sigma2 , gamma2 ) + \
241 # A3 * scipy. special . voigt_profile ((x - mu3), sigma3 , gamma3 ) + \
242 # A4 * scipy. special . voigt_profile ((x - mu4), sigma4 , gamma4 ) + \
243 # A5 * scipy. special . voigt_profile ((x - mu5), sigma5 , gamma5 ) + \
244 # A6 * scipy. special . voigt_profile ((x - mu6), sigma6 , gamma6 ) + \
245 # C
246

247
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248 # sum_2_voigt = mmf. fit_function (
249 # f= f_sum_2_voigt ,
250 # bounds =([-np.inf , -6, 0.1, 0.1,
251 # -np.inf , -4, 0.1, 0.1,
252 # -np.inf , -2, 0.1, 0.1,
253 # -np.inf , 0, 0.1, 0.1,
254 # -np.inf , 2, 0.1, 0.1,
255 # -np.inf , 4, 0.1, 0.1,
256 # -np.inf],
257 # [0, -4, 1, 1,
258 # 0, -1, 1, 1,
259 # 0, 0, 1, 1,
260 # 0, 2, 1, 1,
261 # 0, 4, 1, 1,
262 # 0, 6, 1, 1,
263 # np.inf ]),
264 # description =" sum of 6 voigt profiles with common offset C",
265 # params =[" A1", "mu1", " sigma1 ", " gamma1 ",
266 # "A2", "mu2", " sigma2 ", " gamma2 ",
267 # "A3", "mu3", " sigma3 ", " gamma3 ",
268 # "A4", "mu4", " sigma4 ", " gamma4 ",
269 # "A5", "mu5", " sigma5 ", " gamma5 ",
270 # "A6", "mu6", " sigma6 ", " gamma6 ",
271 # "C"],
272 # )
273

274

275 # %%
276

277 data = pd. read_csv ("../ data/iron/ moessbauer_iron_final .txt", header =0,
delimiter ="\t", decimal =",", names =[" velocity ", "time", " counts "])

278 data["time"] = data["time"] / 1000 # time in s
279

280 data_underground = pd. read_csv ("../ data/ mexican_hat_background /
moessbauer_plexiglass_final .txt", header =0, delimiter ="\t", decimal =",
", names =[" velocity ", "time", " counts "])

281 data_underground ["time"] = data_underground ["time"] / 1000 # time in s
282

283 print(" Measurement time [h]:", data["time"]. sum () / 3600)
284 print("Time per point [s]:", data["time"]. sum () / len(data[" velocity "].

unique ()))
285

286

287 # %%
288

289 data_compton = mmu. read_json ("./ data_compton .json")
290 data_compton
291

292

293 # %%
294

295 velocities = np.sort(data[" velocity "]. unique ())
296 cps_raw = []
297 cps_raw_err = []
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298

299 for velocity in velocities :
300 data_velocity = data[data[" velocity "] == velocity ]
301 cps_raw . append ( data_velocity [" counts "]. sum () / data_velocity ["time"].

sum ())
302 cps_raw_err . append (np.sqrt( data_velocity [" counts "]. sum ()) /

data_velocity ["time"]. sum ())
303

304 cps_raw , cps_raw_err = mmu. convert_to_array (cps_raw , cps_raw_err )
305

306 velocities_underground = np.sort( data_underground [" velocity "]. unique ())
307 cps_underground_raw = []
308 cps_underground_raw_err = []
309

310 for velocity_underground in velocities_underground :
311 data_underground_velocity = data_underground [ data_underground ["

velocity "] == velocity_underground ]
312 cps_underground_raw . append ( data_underground_velocity [" counts "]. sum ()

/ data_underground_velocity ["time"]. sum ())
313 cps_underground_raw_err . append (np.sqrt( data_underground_velocity ["

counts "]. sum ()) / data_underground_velocity ["time"]. sum ())
314

315 cps_underground_raw , cps_underground_raw_err = mmu. convert_to_array (
cps_underground_raw , cps_underground_raw_err )

316

317

318 # %%
319

320 cps = ( cps_raw - data_compton [" compton_cps "]) / data_compton ["
acrylic_absorption "]

321 cps_err = np.sqrt ((1 / data_compton [" acrylic_absorption "] * cps_raw_err )
**2

322 + (1 / data_compton [" acrylic_absorption "] *
data_compton [" compton_cps_err "]) **2

323 + (( cps_raw - data_compton [" compton_cps "]) /
data_compton [" acrylic_absorption "]**2 * data_compton ["
acrylic_absorption_err "]) **2)

324

325 cps_underground = ( cps_underground_raw - data_compton [" compton_cps "]) /
data_compton [" acrylic_absorption "]

326 cps_underground_err = np.sqrt ((1 / data_compton [" acrylic_absorption "] *
cps_underground_raw_err )**2

327 + (1 / data_compton [" acrylic_absorption "] *
data_compton [" compton_cps_err "]) **2

328 + (( cps_underground_raw - data_compton [" compton_cps "])
/ data_compton [" acrylic_absorption "]**2 * data_compton ["
acrylic_absorption_err "]) **2)

329

330

331 # %%
332

333 fig , ax = mmp. make_fig (grid=True)
334
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335 mmp.plot(ax , velocities , cps , y_err=cps_err , label="Count rate of
reemission ", config =" scatter ")

336 # mmp.plot(ax , velocities_underground , cps_underground , y_err=
cps_underground_err ,

337 # label =" Count rate of the unexplained underground ", config ="
scatter ", color =" tab:red ")

338

339

340 velocities_fit = velocities [35:50]
341 cps_fit = cps [35:50]
342 cps_fit_err = cps_err [35:50]
343 mmp.plot(ax , velocities_fit , cps_fit , y_err= cps_fit_err , color="tab:red",

config =" scatter ", label="Data used for the fit")
344

345 mmp. add_to_legend (ax , " ")
346

347 xx = np. linspace (-8, 8, 800)
348 # mmp.plot(ax , xx , sum_2_gauss (xx , -0.2, 0.9, 0.1, 0.3, 0.6))
349 out_2_gauss = mmp.fit( sum_2_gauss ,
350 velocities_fit , cps_fit ,
351 y_err= cps_fit_err ,
352 p0 =[ -0.1 , 0.9, 0.2,
353 0.3, 0.8] ,
354 bounds =True ,
355 print_results =True ,
356 x_range =np. linspace (-8.5, 8.5, 800) ,
357 ax=ax ,
358 result_units =["cps", "mm s$ ^{ -1}$", "mm s$ ^{ -1}$",

"mm s$ ^{ -1}$", "cps"],
359 color=" darkgreen ",
360 kwargs_plot ={" linewidth ": 2.5} ,
361 label=" Gaussian model")
362

363 # mmp.plot(ax , xx , sum_2_lorentz (xx , -0.2, 0.9, 0.1, 0.3, 0.7))
364 out_2_lorentz = mmp.fit( sum_2_lorentz ,
365 velocities_fit , cps_fit ,
366 y_err= cps_fit_err ,
367 p0 =[ -0.2 , 0.9, 0.1,
368 0.3, 0.7] ,
369 bounds =True ,
370 print_results =True ,
371 x_range =np. linspace (-8.5, 8.5, 400) ,
372 ax=ax ,
373 result_units =["cps", "mm s$ ^{ -1}$", "mm s$ ^{ -1}$"

, "mm s$ ^{ -1}$", "cps"],
374 color=" purple ",
375 kwargs_plot ={" linewidth ": 2.5} ,
376 label=" Lorentzian model")
377

378 out_2_voigt = mmp.fit( sum_2_voigt ,
379 velocities_fit , cps_fit ,
380 y_err= cps_fit_err ,
381 p0 =[ -0.2 , 0.9, 0.1, 0.1,
382 0.3, 0.7] ,
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383 bounds =True ,
384 print_results =True ,
385 x_range =np. linspace (-8.5, 8.5, 400) ,
386 ax=ax ,
387 result_units =["cps", "mm s$ ^{ -1}$", "mm s$ ^{ -1}$",

"mm s$ ^{ -1}$", "mm s$ ^{ -1}$", "cps"],
388 color="red",
389 kwargs_plot ={" linestyle ": (0, (1, 3)), " linewidth ":

2.5} ,
390 label="Voigt model")
391

392 out = {"gauss": out_2_gauss ,
393 " lorentz ": out_2_lorentz ,
394 "voigt": out_2_voigt }
395

396 ax. set_title (" Reemission spectrum of natural iron")
397 ax. set_xlabel (r" Velocity $v$ [mm s$ ^{ -1}$]")
398 ax. set_ylabel (r"Count rate [cps]")
399

400 ax. set_xlim (-8.5, 8.5)
401 mmp. legend (ax , loc =1, ncols =2)
402 ax. set_ylim (0.18 , 0.88)
403

404 # mmp. legend (ax , loc =1)
405

406 if save_images :
407 mmp. save_fig (fig , path="../ report / figures ", name="iron", extension ="

pdf")
408

409

410 # %%
411

412 def energy_from_speed (E, E_err , v, v_err):
413 """
414 E in eV , v in m/s
415 [Delta E, Delta E err] output in eV
416 """
417

418 c = scipy. constants .c
419 return np.array ([E * v / c, np.sqrt ((E / c * v_err)**2 + (v / c *

E_err)**2) ])
420

421

422 e_charge = scipy. constants .e
423 E_iron = 14.41295 e3 # eV
424 E_iron_err = 0.00031 e3 # eV
425 for profile in ["gauss", " lorentz ", "voigt"]:
426 # print(out[ profile ][0][1] , out[ profile ][1][1])
427 print(f" Isomer shift calculated with { profile } profile :")
428 print(f"{ energy_from_speed (E_iron , E_iron_err , out[ profile ][0][ -2]*1e

-3, out[ profile ][1][ -2]*1e -3) *1e9} neV")
429

430

431 # %%
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432

433 # lit vals
434 mu_n = 3.15245e-8 # eV / T
435 mu_e = -0.1549 * mu_n
436 mu_e_err = 0.0002 * mu_n
437 mu_g = 0.09044 * mu_n
438 mu_g_err = 0.00007 * mu_n
439 e_iron = 14.41295 * 1e3 # eV
440 e_iron_err = 0.00031 * 1e3 # eV
441

442 speed_gauss = out_2_gauss [0][1] * 1e-3 # this is in m/s. the data was in
mm/s.

443 speed_gauss_err = out_2_gauss [1][1] * 1e-3
444 speed_lorentz = out_2_lorentz [0][1] * 1e-3 # this is in m/s. the data

was in mm/s.
445 speed_lorentz_err = out_2_lorentz [1][1] * 1e-3
446 speed_voigt = out_2_voigt [0][1] * 1e-3 # this is in m/s. the data was in

mm/s.
447 speed_voigt_err = out_2_voigt [1][1] * 1e-3
448 speed_iso_gauss = out_2_gauss [0][3] * 1e-3 # this is in m/s. the data

was in mm/s.
449 speed_iso_gauss_err = out_2_gauss [1][3] * 1e-3
450

451 # light = scipy. constants .c
452

453 # fit results : Delta E_alpha ( distance isomer to first peak) for the
different

454 # fits in eV:
455 E_gauss = speed_gauss * e_iron / scipy. constants .c
456 E_gauss_err = np.sqrt(
457 ( e_iron / scipy. constants .c)**2 * speed_gauss_err **2
458 + ( speed_gauss / scipy. constants .c)**2 * e_iron_err **2
459 )
460 E_lorentz = speed_lorentz * e_iron / scipy. constants .c
461 E_lorentz_err = np.sqrt(
462 ( e_iron / scipy. constants .c)**2 * speed_lorentz_err **2
463 + ( speed_lorentz / scipy. constants .c)**2 * e_iron_err **2
464 )
465 E_voigt = speed_voigt * e_iron / scipy. constants .c
466 E_voigt_err = np.sqrt(
467 ( e_iron / scipy. constants .c)**2 * speed_voigt_err **2
468 + ( speed_voigt / scipy. constants .c)**2 * e_iron_err **2
469 )
470

471 # isomer shift
472 E_iso_gauss = speed_iso_gauss * e_iron / scipy. constants .c
473 E_iso_gauss_err = np.sqrt(
474 ( e_iron / scipy. constants .c)**2 * speed_iso_gauss_err **2
475 + ( speed_iso_gauss / scipy. constants .c)**2 * e_iron_err **2
476 )
477 # print( out_2_gauss [0])
478

479 # print(E_gauss , "pm", E_gauss_err )
480 # print(E_lorentz , "pm", E_lorentz_err )
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481 # print(E_voigt , "pm", E_voigt_err )
482

483

484 B_gauss = E_gauss / (1 / 3 * mu_e + mu_g)
485 B_gauss_err = np.sqrt(
486 E_gauss_err **2 / (1 / 3 * mu_e + mu_g)**2 +
487 1 / 9 * E_gauss **2 * mu_e_err **2 / (1 / 3 * mu_e + mu_g)**4
488 +
489 E_gauss **2 * mu_g_err **2 / (1 / 3 * mu_e + mu_g)**4
490 )
491 B_lorentz = E_lorentz / (1 / 3 * mu_e + mu_g)
492 B_lorentz_err = np.sqrt(
493 E_lorentz_err **2 / (1 / 3 * mu_e + mu_g)**2
494 +
495 1 / 9 * E_lorentz **2 * mu_e_err **2 / (1 / 3 * mu_e + mu_g)**4
496 +
497 E_lorentz **2 * mu_g_err **2 / (1 / 3 * mu_e + mu_g)**4
498 )
499 B_voigt = E_voigt / (1 / 3 * mu_e + mu_g)
500 B_voigt_err = np.sqrt(
501 E_voigt_err **2 / (1 / 3 * mu_e + mu_g)**2
502 +
503 1 / 9 * E_voigt **2 * mu_e_err **2 / (1 / 3 * mu_e + mu_g)**4
504 +
505 E_voigt **2 * mu_g_err **2 / (1 / 3 * mu_e + mu_g)**4
506 )
507

508 print("gauss: ", B_gauss , B_gauss_err )
509 print(" lorentz : ", B_lorentz , B_lorentz_err )
510 print("voigt: ", B_voigt , B_voigt_err )
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