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Table 1 shows an overview of the symbols used in this lab report.

Symbol Meaning

a Size of a unit cell from a crystal
α Bragg angle

αmin Minimal Bragg angle
αx Bragg angle for a specific line K
d Lattice constant
h Planck constant

νKx
Frequency of a specific line Kx

νmax Maximal frequency
λ Wavelength

λmin Minimal wavelength
λKx

Wavelength of a specific line Kx

U Voltage
UA Anode voltage
UZ Counter voltage
Ry Rydberg Constant
e Elementary charge
c0 Speed of light
sx Error on the (measured) quantity x

xlit Literature value of the quantity x

xcalc Calculated value of quantity x

Z atomic number of an element

Table 1: Symbols used in this lab report

1 Objective

In this experiment we first have to record the characteristic of a Geiger-
Müller counter. Afterwards we have to measure the bremsstrahlung spec-
trum together with the Kα- and the Kβ-X-rays of a copper diode by using
a monocrystal. Furthermore we have to calculate the lattice constant, the
wavelength of the Cu Kβ-line and the wavelength of the Cu Kα-radiation.
In the end we have to determine the Planck constant.

2 Theoretical Basis

X-Rays are generated when electrons are accelerated or decelerated and
electromagnetic radiation is emitted during the process. If an electron is
accelerated by traversing a voltage difference UA it gains kinetic energy
Ekin = e · UA. If the kinetic energy is fully converted to a quantum, the
energy balance

hνmax =
hc0

λmin

= e · UA. (1)

holds, where νmax is the maximal frequency of the bremsstrahlung spectrum.
Bremsstrahlung occurs when electrons are accelerated towards an anti cath-
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ode and interact with the coulomb field of the nucleus of the atoms making
up the anti cathode.

So called Kα-X-Rays are generated when accelerated electrons hit the
inner electrons of the nuclei of the anti cathode material and knock them
away from their nuclei so that an electron from the L-shell has to fill the
emerging hole. To determine the frequency (or equivalently: the wavelength)
of the emitted Kα-X-Rays one can use the law of Moseley:

νKα
=

c0

λKα

=
3

4
(Z − 1)2Ry (2)

Ry = 3.290 × 1015 Hz is the so called rydberg frequency and Z stands for the
atomic number of the cathode nucleus. The characteristic line spectrum of
the X-rays results out of the ionisation of some atoms when electrons arrive
at the cathode.
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Figure 1: Bragg reflection of X-Ray radiation

Now we will shortly explain how the Bragg reflection works: In a mono
crystal one can find different lattice planes (cf. fig. 1). When X-rays arrive
at a mono crystal, they get scattered in many different directions. If the
path difference of two adjacent rays arriving in different lattice planes in
the mono crystal is a multiple of the radiations wavelength λ, constructive
interference occurs. This can be expressed mathematically in the following
way:

2d sin α = nλ. (3)

It means that it comes to constructive interference between two rays which
are reflected on different lattice planes of a crystal when their path difference
is 2d sin α. d is the distance between the lattice planes and α is the angle
of incidence of the radiation. Rays which are reflected by the same lattice
plane don’t show any path difference. Figure 2 shows a schematic overview
over the atomic geometry of the crystal we used in our measurements. The
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Figure 2: Geometry of a Lithium-Fluoride crystal. Depicted is a single unit
cell.

atomic structure suggests that the lattice constant d, which is also shown in
fig. 1, is related to the unit cell size a of the crystal by

a = 2d. (4)

3 Setup and Procedure

For our measurements we used an X-ray device with a radiation detector
which in turn was connected to a discriminator feeding into a counting
device. In the X-ray device one can find an X-ray tube and a crystal on a
swiveling vertical axis. One can also find a radiation detector, which can
swivel around the crystal. During the measurement we had to control the
voltage UA of the anode. The detector was connected to an external high-
voltage device. By use of a cord the signals picked up by the detector could
get to the counting device. With these counts we could determine the outline
of the spectrum of the reflected radiation for a constant time of counting for
different angles.

In order to determine the characteristic of the counter, we measured the
number of the pulses for a specific time (30 s each) for multiple values of
the voltage UZ of the counter. The distance between two adjacent voltage
values was adjusted according to the increase of counted signals.

We investigated the X-ray emission spectrum in three different ways:
In order to get an overview of the whole spectrum and investigate the

rough position of the extrema, we noted the number of registered pulses N
for a constant counter voltage in a specific time of counting depending on
the Bragg angle α.

Afterwards we had a close look on the maximum values of the spectrum
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and on how the shape in the position of the maximums from the character-
istic lines change for small changes of the Bragg angle, which we adjusted
in small steps. We realized this measurement by measuring the registered
signals for small changes of the angle in the area of the maximums.

In addition we took this measurement in the area with small angles to
investigate the beginning of the continuum.

4 Measurement

For all our measurements we used a LiF-monocrystal with an interplanar
distance of 201 pm.

4.1 Charakteristic of the Counter

First we adjusted the voltage of the anode to a value of 20 kV, the angle of
Bragg reflection to a value of 12° and the counting time to a value of 30 s.

In order to measure the characteristic of the counter, we measured the
number of pulses in 30 s dependent on the voltage UZ of the counter. The
value of this voltage we changed in steps of 25 V between 300 V to 850 V. In
the interesting area of measuring, i. e. when we detected a great increase in
counts, we chose a smaller stepwidth. For the error on the counted numbers
of registered signals the square root of the registered number was chosen.
We justify this by approximating the distribution of the measured counts
with a poisson distribution from which the variance can be estimated by the
arithmetic mean of all given observations (in our case our only observation
is N), meaning that the standard deviation of a poisson distributed random
variable can be estimated by taking the square root of the estimator of the
variance, i. e. the mean.

For the voltage of the counter we decided to take an uncertainty of 0.5 V
as the number of shown digits on the display for the voltage was limited,
so that the smallest possible measureable value was 1 V. One can see the
results of our measurements in table 2.

4.2 Spectrum of X-Ray Emission

In order to investigate the whole spectrum we measured the number of
registered pulses depending on the Bragg angle for a constant counter voltage
UZ of 500 V in a counting time of 15 s. For the counting time we chose a
value of 15 s, as we were able to detect 2000 signals at a Bragg angle of 12°

for this counting time, as was suggested in the manual [3]. The results from
our measurements are shown in table 3.

Afterwards we repeated the measurement for a stepwidth of 0.2° in the
area of the maximal value of registered signals. Because of the previous
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experience our assistant had with this experiment we took this measurement
two times. One can see our results in table 4.

After that we conducted the same measurement as described above for
the minimum of the spectrum. For the same reasons as before we decided
to take this measurement two times. Because the results didn’t seem to be
compatible, we took the same series of measurement a third time. One can
find our results in table 5.

All the measurements we took during the experiment can be found in
the appendix.

5 Analysis

5.1 Characteristic of the Counter

In order to analyse the characteristic of the counter, we plotted our mea-
surements from table 2 in the graph shown in fig. 3. As expected, a rapid
increase in events followed by a long plateau could be observed.
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N

Measured Data

Figure 3: Characteristic of the Counter: The counted events N from table 2
is plotted against the counter voltage UZ in order to find the optimal voltage
for further measurements.

5.2 Determination of the Lattice Constant

Out of the results from our two measurements for the number of registered
signals N against the Bragg angle α, which one can see in section 4.2 we
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created three graphs based on the measurements given in tables 3 to 5. In
fig. 4, which is based on table 3, one can see the whole spectrum while fig. 5
shows the three measurements of counting rate for small angles.
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N

Measured Data

Figure 4: Complete Spectrum of the number of registered signals against
the Bragg angle α
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Figure 5: number of registered signals against the Bragg angle α for small
angles on logarithmic scale
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The plot fig. 6 shows the number of counts against the Bragg angle in
the area of the maximal value of registered signals. The graph contains both
measurement series from table 4.
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1, 000
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αKα = 22.7°

αKβ
= 20.5°

α/°

N

1st Series of Measurement

2nd Series of Measurement

Figure 6: number of registered signals against the Bragg angle α near the
maximums

Because the overall values of both measurement series don’t differ too
much we could estimate the Bragg angle for the highest number of registered
signals with great confidence. The angle at which the count rate is at a
maximum is marked alongside the measurements in fig. 6. We estimated
the Bragg angle at a value of

αKα
= (22.70 ± 0.08)°. (5)

The error on this value has been manually estimated by us by looking at
the distance between the two maximum points.

Now the lattice constant can be calculated by use of eq. (3):

d =
λ

sin αKα

= 199.9 pm (6)

Because we only took measurements of the first peak, k has to equal one.
The wavelength λ = 154.2 pm was extracted from the manual [3]. By use
of Gaussian error propagation one can estimate the error on the lattice
constant:

sd = sαKα

λ cos αKα

2 sin2(αKα
)

= 1.0 pm. (7)
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Therefore we obtain a value of the lattice constant of:

d = (199.9 ± 0.7) pm. (8)

Using the lattice constant and eq. (4) one can calculate the size a of a crystal
unit cell as

a = 2d = 399.8 pm (9)

with an error of
sa = 2sd = 1.4 pm. (10)

5.3 Calculation from the Wavelengths of the Kα- and the

Kβ-line

By looking at fig. 6 we can estimate the Bragg angle for which the count
rate becomes maximum for the first time, which corresponds to the Kβ-line.
By estimation, one arrives at

αKβ
= (20.50 ± 0.13)°. (11)

By looking again at the distance between the two highest measured values of
the counting rate we estimated the uncertainty of the angle. As the distance
between these two points seems a bit higher for the Kβ-line than for the Kα-
line, we estimated a higher error for the angle of the Kβ-line than for the
Kα-line accordingly.

With the priorly calculated value of the lattice constant d we can now
calculate the wavelength of the Kβ-line. This can be achieved by use of
Equation (3). As a result we obtain:

λKβ
= 2d sin αKβ

= 140.0 pm. (12)

The error on the wavelength can once again be obtained by the use of Gaus-
sian error propagation:

sλKβ
=

√

(

sd2 sin αKβ

)2

+
(

sα2d cos αKβ

)2

= 0.9 pm. (13)

The wavelength of the Kβ-line is thus (140.0 ± 0.9) pm.
In addition one can calculate the wavelength of the Kα-line in good ap-

proximation by the law of Moseley eq. (2). First we calculate the frequency
of the Kα-line. The atomic number of copper is Z = 29. With the Rydberg-
frequency we get a frequency of

νKα
=

3

4
(Z − 1)2Ry = 1.93 × 1018 Hz. (14)

With this value the wavelength can be calculated:

λKα
=

c0

νKα

= 155.1 pm. (15)
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5.4 Use of Bremsstrahlung and Determination of the Plack

Constant

Figure 7 shows a graph based on our measurements given in table 5. By
graphical estimation of the angle αmin for which the spectrum approaches
a local minimum one can approximate the point at which bremsstrahlung
occurs:

αmin = (7.3 ± 1.3)°. (16)
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2nd Series of Measurement

3rd Series of Measurement

Figure 7: number of registered signals against the Bragg angle α for small
angles

The error on this angle was estimated alongside the angle itself. As the
three measurement series differ quite a lot, we have to admit that the best
value of the angle isn’t really exact. We tried to counter this by choosing
the margin of error to be an unusually high value.

With αmin we can calculate by use of eq. (3) the minimum wavelength
λmin:

λmin = 2d sin αmin = 51 pm (17)

For d we used the value which we calculated prior for the lattice constant
in eq. (8). We determined the error on the wavelength by use of Gaussian
error propagation:

sλmin
=

√

(sd2 sin αmin)2 + (sαmin
2d cos αmin)2 = 2 pm. (18)
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By use of eq. (1) one can now calculate the Planck constant h:

h =
e · UA

c0

λmin = 6.00 J s (19)

The speed of light1 c0 as well as the elementary charge2 e was assumed to be
exact [1]. The error on h can once again be determined by use of Gaussian
error propagation:

sh =
e · UA

c0

sλmin
= 0.20 J s. (20)

Thus, our result for the Planck constant becomes

h = (6.00 ± 0.20) × 10−34 Js. (21)

6 Discussion

6.1 Characteristic of the Counter

In fig. 3 one can see the characteristic of the counter. We remarked a rapid
increase in events followed by a long plateau.

By looking at fig. 3 one can also see that the measured points fluctuate
quite visibly. In addition the number of registered events still increases
after reaching the plateau. This could have been caused because it was
the first one of our measurements so that the high voltage generator hasn’t
had enough time to heat, which results in the voltage not having enough
time to steady itself. That would also explain why the counting rate in this
measurement series is all in all lower than in all the following experiments
(the difference of the counting rates between the experiments is so high that
it couldn’t have been caused by a difference in 2 kV of the anode voltage).

Even so the beginning of the plateau is well visible in the diagram. Al-
though one can’t clearly see at which point the plateau ends, we estimate
the middle of the plateau at a voltage of around 500 V as it looks like the
plateau begins at a voltage of around 400 V and ends at a voltage of around
600 V, at which point the number of measured events increases again.

6.2 Graphical Observation of the Spectrum

In fig. 4 one can see the whole spectrum of the measured points from the
counting against the adjusted angle α. It gets obvious that there are two
points of maximal value corresponding to the expected Kα- and Kβ-line.

1
c0 = 299 792 458

m

s
.

2
e = 1.602 × 10

−19
C
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Additionally the underlying bremsstrahlung spectrum sets in before the first
Kβ-peak and steadily declines beyond it.

Figure 6 shows the course of the spectrum near the maximums in detail.
We can see that we have two local maxima which are clearly separated by a
few points inbetween. We estimated that we have one maximum at an angle
of

αKα
= (22.70 ± 0.08)°. (22)

This belongs to the K-α-line. We also estimated the maximum of the K-β-
line to be at an angle of

αKβ
= (20.50 ± 0.13)°. (23)

Figure 5 shows the minimum of the spectrum for small angles in detail.
First one can say that the difference between the values of the three mea-
surements is relatively high. That may be caused by a systematic error from
the set-up of our experiment as our assistant said before.

In the diagram one can also see that the counting rate for small angles
is relatively high. This is the result of some of the X-rays passing directly
into the detector without having been reflected on the crystal lattice planes.
We estimated the minimum at an angle of

αmin = (7.3 ± 0.3)°, (24)

as it is shown in fig. 7. This corresponds to the point where the continuous
spectrum begins and bremsstrahlung sets in.

6.3 Determination of the Lattice Constant

By use of the angle we estimated for the K-α-line before we were able to
calculate the lattice constant:

dcalc = (199.9 ± 0.7) pm. (25)

According to the label on the LiF-crystal that we used in our measurements,
the lattice constant equals

d = 201 pm. (26)

The calculated value of the lattice constant exists in a 1.5σ-environment of
the expected value for the lattice constant. Because of that we can say we
obtained a good result from our measurement within reasonable margins of
uncertainty.

By using the result for the lattice constant we easily calculated the size
of a unit cell to be

acalc = (399.8 ± 1.4) pm. (27)
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6.4 Calculation from the Wavelengths of the Kα- and the

Kβ-line

With the already calculated value of the lattice constant we could determine
the wavelength of the Kβ-line:

λK,βcalc
= (140.0 ± 0.9) pm. (28)

The literature value [2] for this characteristic line is

λK,βlit
= (139.223 40 ± 0.000 60) pm. (29)

It is obvious that our calculated value of the wavelength corresponds with
the literature value, because the literature value is in a one σ-environment
of the calculated value. By use of the law of Moseley we also calculated the
wavelength of the Kα-line. As a result we obtained:

λK,αcalc
=

c

νK,α

= 155.1 pm. (30)

The calculated value corresponds relative good with the value of the wave-
length from the Kα-line given in [3]:

λK,αlit
=

c

νK,α

= 154.2 pm. (31)

The difference between these values could be caused, because we used the
approximately value of c = 3 × 108 m/s and not the exact value of the speed
of light for our calculation.

6.5 Use of Bremsstrahlung and Calculation of the Planck

Constant

By looking at fig. 7 we estimated the angle αmin at which bremsstrahlung
occurs:

αmin = (7.3 ± 1.3)°. (32)

Then we calculated the minimal wavelength λmin by using the condition of
Bragg:

λmin = 2d sin αmin = (51 ± 2) pm (33)

With this result we obtained for the Planck constant h:

hcalc = (6.00 ± 0.20) × 10−34 J s (34)

The literature value [1] of the constant is:

hlit = 6.626 Js. (35)
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It’s clear to see that our calculated value for the Planck constant is within
around 3σ-environments of the literature value. The deviation between these
values may result out of a systematic error: As one can see in fig. 7 it wasn’t
easy to estimate the exact point where the minimal value of the Bragg angle
is located. It could be located everywhere between 6.5° to 8°. Because the
point is so difficult to determine, we already chose a high uncertainty for
the estimated value of the minimal Bragg angle αmin. Out of the value
we calculated for the Planck constant it gets obvious that we should have
estimated a higher value of αmin and probably a higher uncertainty on it.
That would result in a higher value for λmin which would again result in
an higher calculated value for the Planck constant. Another cause for the
high deviation between the three measurements in table 5 and fig. 7 may be
that we accidentally switched off the counter voltage UZ between the first
two measurements. Although the measurements in table 3 were unaffected,
we can’t say with clarity that this didn’t cause the high deviation of our
data from table 5. Another point to consider is the failure rate of the
counter. While the probability of not measuring an event should stay the
same throughout all measurements, outside factors such as temperature or
humidity may greatly impact the discriminators function.

In addition there could have been another systematic error in our mea-
surements, because in the area of small Bragg angles occurs scattered radi-
ation which increases the number of registered pulses. This again results in
a shift of the value from the Bragg angle to smaller angles. Although this
argument can be supported using the relatively old machinery supporting
the alignment of the crystal and the detector, the data in fig. 7 shows that
especially the third measurement features a much greater increase than we
would expect from a simple offset.

Respecting these systematic errors, we can say the value we calculated
for the Planck constant is abrasively compatible with the literature value all
in all.
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A Appendix

A.1 Measured Values

UZ in V N

300.0 ± 0.5 0 ± 1

325.0 ± 0.5 0 ± 1

345.0 ± 0.5 0 ± 1

347.0 ± 0.5 0 ± 1

348.0 ± 0.5 851 ± 29

349.0 ± 0.5 1930 ± 40

350.0 ± 0.5 3300 ± 60

355.0 ± 0.5 3250 ± 60

360.0 ± 0.5 3230 ± 60

365.0 ± 0.5 3260 ± 60

375.0 ± 0.5 3320 ± 60

400.0 ± 0.5 3220 ± 60

426.0 ± 0.5 3440 ± 60

450.0 ± 0.5 3320 ± 60

475.0 ± 0.5 3470 ± 60

UZ in V N

500.0 ± 0.5 3560 ± 60

525.0 ± 0.5 3490 ± 60

550.0 ± 0.5 3610 ± 60

575.0 ± 0.5 3680 ± 60

600.0 ± 0.5 3590 ± 60

625.0 ± 0.5 3560 ± 60

650.0 ± 0.5 3710 ± 60

675.0 ± 0.5 3700 ± 60

700.0 ± 0.5 3820 ± 60

725.0 ± 0.5 3780 ± 60

750.0 ± 0.5 3770 ± 60

775.0 ± 0.5 3940 ± 60

800.0 ± 0.5 4070 ± 60

825.0 ± 0.5 4050 ± 60

850.0 ± 0.5 4240 ± 70

Table 2: Characteristic of the counting device (cf. section 4.1)
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α in ° N

5.0 ± 0.1 3990 ± 60

5.6 ± 0.1 1620 ± 40

6.0 ± 0.1 868 ± 29

6.6 ± 0.1 527 ± 23

7.0 ± 0.1 463 ± 22

7.6 ± 0.1 532 ± 23

8.0 ± 0.1 511 ± 23

8.6 ± 0.1 588 ± 24

9.0 ± 0.1 781 ± 28

9.6 ± 0.1 960 ± 30

10.0 ± 0.1 1220 ± 30

10.6 ± 0.1 1380 ± 40

11.0 ± 0.1 1630 ± 40

11.6 ± 0.1 1900 ± 40

12.0 ± 0.1 2780 ± 50

12.6 ± 0.1 2540 ± 50

13.0 ± 0.1 2910 ± 50

13.6 ± 0.1 2780 ± 50

14.0 ± 0.1 2790 ± 50

14.6 ± 0.1 2890 ± 50

15.0 ± 0.1 3210 ± 60

15.6 ± 0.1 3120 ± 60

16.0 ± 0.1 3390 ± 60

16.6 ± 0.1 3520 ± 60

17.0 ± 0.1 3450 ± 60

17.6 ± 0.1 3450 ± 60

α in ° N

18.0 ± 0.1 3400 ± 60

18.6 ± 0.1 3590 ± 60

19.0 ± 0.1 3850 ± 60

19.6 ± 0.1 3720 ± 60

20.0 ± 0.1 6940 ± 80

20.6 ± 0.1 22 140 ± 150

21.0 ± 0.1 4430 ± 70

21.6 ± 0.1 3910 ± 60

22.0 ± 0.1 7710 ± 90

22.6 ± 0.1 79 460 ± 280

23.0 ± 0.1 42 770 ± 210

23.6 ± 0.1 2920 ± 50

24.0 ± 0.1 2550 ± 50

24.6 ± 0.1 2570 ± 50

25.0 ± 0.1 2000 ± 40

25.6 ± 0.1 1810 ± 40

26.0 ± 0.1 1670 ± 40

26.6 ± 0.1 1520 ± 40

27.0 ± 0.1 1400 ± 40

27.6 ± 0.1 1170 ± 30

28.0 ± 0.1 1160 ± 30

28.6 ± 0.1 1080 ± 30

29.0 ± 0.1 940 ± 30

29.6 ± 0.1 920 ± 30

30.0 ± 0.1 869 ± 29

Table 3: Counted events N measured with respect to the bragg angle α
within the scope of section 4.2.
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N

α in ° 1
st Measurement 2

nd Measurement

19.0 ± 0.1 3980 ± 60 3800 ± 60

19.2 ± 0.1 4150 ± 60 3930 ± 60

19.4 ± 0.1 3890 ± 60 3850 ± 60

19.6 ± 0.1 3770 ± 60 3770 ± 60

19.8 ± 0.1 5100 ± 70 5030 ± 70

20.0 ± 0.1 6530 ± 80 6670 ± 80

20.2 ± 0.1 16 660 ± 130 16 550 ± 130

20.4 ± 0.1 22 520 ± 150 22 380 ± 150

20.6 ± 0.1 23 550 ± 150 23 190 ± 150

20.8 ± 0.1 8900 ± 90 8780 ± 90

21.0 ± 0.1 4410 ± 70 4470 ± 70

21.2 ± 0.1 4130 ± 60 4110 ± 60

21.4 ± 0.1 3910 ± 60 4020 ± 60

21.6 ± 0.1 3830 ± 60 3870 ± 60

21.8 ± 0.1 4070 ± 60 4080 ± 60

22.0 ± 0.1 7420 ± 90 7600 ± 90

22.2 ± 0.1 11 280 ± 110 11 280 ± 110

22.4 ± 0.1 45 420 ± 210 46 350 ± 220

22.6 ± 0.1 79 670 ± 280 78 970 ± 280

22.8 ± 0.1 98 100 ± 300 97 600 ± 300

23.0 ± 0.1 44 420 ± 210 43 080 ± 210

23.2 ± 0.1 6160 ± 80 6290 ± 80

23.4 ± 0.1 3330 ± 60 3300 ± 60

23.6 ± 0.1 2780 ± 50 2820 ± 50

23.8 ± 0.1 2760 ± 50 2730 ± 50

24.0 ± 0.1 2610 ± 50 2510 ± 50

Table 4: Counted events N measured with respect to the bragg angle α near
Kα and Kβ lines in the intensity spectrum
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N

α in ° 1
st Measurement 2

nd Measurement 3
rd Measurement

6.0 ± 0.1 844 ± 29 813 ± 29 900 ± 30

6.2 ± 0.1 652 ± 26 606 ± 25 682 ± 26

6.4 ± 0.1 620 ± 25 563 ± 24 606 ± 25

6.6 ± 0.1 450 ± 21 508 ± 23 508 ± 23

6.8 ± 0.1 453 ± 21 489 ± 22 488 ± 22

7.0 ± 0.1 476 ± 22 442 ± 21 503 ± 22

7.2 ± 0.1 565 ± 24 482 ± 22 415 ± 20

7.4 ± 0.1 453 ± 21 473 ± 22 445 ± 21

7.6 ± 0.1 506 ± 22 505 ± 22 462 ± 21

7.8 ± 0.1 500 ± 22 496 ± 22 491 ± 22

8.0 ± 0.1 531 ± 23 549 ± 23 515 ± 23

8.2 ± 0.1 585 ± 24 560 ± 24 584 ± 24

8.4 ± 0.1 606 ± 25 607 ± 25 689 ± 26

8.6 ± 0.1 639 ± 25 659 ± 26 1040 ± 30

8.8 ± 0.1 723 ± 27 673 ± 26 1370 ± 40

9.0 ± 0.1 755 ± 27 780 ± 28 1660 ± 40

9.2 ± 0.1 781 ± 28 822 ± 29 1900 ± 40

9.4 ± 0.1 840 ± 29 910 ± 30 2410 ± 50

Table 5: Counted events N measured with respect to the bragg angle α near
the beginning of bremsstrahlung
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A.2 Lab Notes
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