Physiklabor für Anfänger\*innen 2 Ferienpraktikum im Wintersemester 2018/19

# Versuch 64: Operationsverstärker

(durchgeführt am 18. März 2019 bei

19. März 2019

# Inhaltsverzeichnis

| 1            | Ziel des | s Versuchs               | 4        |
|--------------|----------|--------------------------|----------|
| <b>2</b>     | Physika  | alische Grundlagen       | 4        |
| 3            | Aufbau   | und Durchführung         | <b>5</b> |
|              | 3.1 Inv  | ertierender Verstärker   | 5        |
|              | 3.2 Int  | egrator                  | 6        |
|              | 3.3 Spa  | annungsfolger            | 6        |
| <b>4</b>     | Messur   | lg                       | 6        |
|              | 4.1 Inv  | ertierender Verstärker   | 6        |
|              | 4.2 Int  | egrator                  | 7        |
|              | 4.3 Spa  | annungsfolger            | 7        |
| <b>5</b>     | Auswer   | tung                     | 8        |
|              | 5.1 Inv  | ertierender Verstärker   | 8        |
|              | 5.2 Int  | egrator                  | 10       |
|              | 5.3 Spa  | annungsfolger            | 12       |
|              | 5.4 Sät  | tigungsverhalten         | 12       |
| 6            | Diskuss  | sion                     | 16       |
|              | 6.1 Inv  | ertierender Verstärker   | 16       |
|              | 6.2 Int  | egrator                  | 17       |
|              | 6.3 Spa  | annungsfolger            | 17       |
|              | 6.4 Sät  | tigungsverhalten         | 18       |
| $\mathbf{A}$ | Anhang   | ç ]                      | 19       |
|              | A.1 Me   | sswerte                  | 19       |
|              | A.2 La   | $\operatorname{porheft}$ | 24       |

\_

| Größensymbol | Bedeutung                                          |
|--------------|----------------------------------------------------|
| U            | Spannung                                           |
| Ι            | Stromstärke                                        |
| R            | Elektrischer Widerstand                            |
| Z            | Impedanz                                           |
| C            | Kapazität                                          |
| A            | Verstärkung                                        |
| $\omega$     | Kreisfrequenz                                      |
| $r_{ m A}$   | Dynamischer Ausgangswiderstand                     |
| f            | Frequenz                                           |
| ≈,⊐          | Regressionsparameter                               |
| $s_x$        | Unsicherheit auf (Mess-)<br>Größe $\boldsymbol{x}$ |

In Tabelle 1 ist eine Übersicht über alle in diesem Versuchsprotokoll verwendeten Symbole gegeben.

Tabelle 1: Symbole, die in diesem Versuchsprotokoll verwendet wurden.

# 1 Ziel des Versuchs

Das Ziel dieses Versuchs ist, einen invertierten Verstärker aufzubauen, um den Frequenzgang der Verstärkung mit einem sinusförmigen Wechselspannungssignal für verschiedene Rückkopplungswiderstände zu messen. Dann soll die Eignung der Schaltung als Integrator untersucht werden. Anschließend soll ein Spannungsfolger aufgebaut werden und das Sättigungsverhalten der Ausgangsspannung bei Belastung des Ausgangs und bei erhöhtem Ausgangswiderstand untersucht werden.

# 2 Physikalische Grundlagen

Bei einem Operationsverstärker beeinflussen die beiden Eingangssignale nach

$$U_A = A_0 (U_+ - U_-) \tag{1}$$

mit umgekehrtem Vorzeichen das Ausgangssignal. Dabei ist  $A_0$  die Leerlaufverstärkung. Damit ein invertierender Verstärker "normal" arbeitet, muss bei ihm

$$U_{-} = -\frac{U_A}{A_0} \tag{2}$$

gelten.

Der Zusammenhang zwischen dem Eingangs- und Rückkopplungswiderstand bei einem invertierendem Verstärker lässt sich mit

$$U_A = -(R_2/R_1)U_E$$
 (3)

beschreiben, wobei

$$A = R_1/R_2 \tag{4}$$

die Verstärkung ist. Für komplexwertige Rückkopplungsimpedanzen ist in der obigen Formel der elektrische Widerstand  $R_2$  durch die entsprechende Impedanz zu ersetzen. Dann gibt allerdings auch der Betrag von A, das durch die Impedanz zu einer komplexen Größe geworden ist, das Verhältnis der (reellen) Amplituden an.

Der durch die interne Schaltung hervorgerufene dynamische Leerlauf-Ausgangswiderstand ist an der Stelle  $U_+ - U_- =$  konst. gegeben durch

$$r_{A,0} = -\frac{\delta U_A}{\delta I_A}.$$
(5)

# 3 Aufbau und Durchführung

#### 3.1 Invertierender Verstärker

Zuerst bauten wir eine Operationsverstärker-Grundschaltung gemäß Abbildung 1 auf und führten einen Nullabgleich durch, indem wir über einen veränderlichen Widerstand im Operationsverstärker-Baustein das Offset der Ausgangsspannung regulierten und auf null setzten. Daraufhin nahmen wir bei einem sinusförmigen Eingangssignal den Frequenzgang eines linearen Verstärkers auf und konnten überprüfen, ob das bei hohen Frequenzen erwartete Zusammenbrechen der Verstärkung stattfindet. Ebenfalls maßen wir der Frequenzgang eines frequenzabhängigen Verstärkers für einen komplexen Widerstand.



Abbildung 1: Schaltbild eines invertierenden Verstärkers

#### 3.2 Integrator

Beim Integrator überprüften wir die Integrationsfunktion, indem wir als Eingangssignal eine Rechteckverlauf wählten und die Form sowie die Amplitude des Ausgangssignals in Abhängigkeit der Frequenz untersuchten. Die selbe Messung wiederholten wir danach mit einem anderen Widerstand, um die Änderung der Signalform und -amplitude beobachten zu können.

#### 3.3 Spannungsfolger

Nun modifizierten wir die Schaltung so, dass wir einen Spannungsfolger erhielten. Dieser ist schematisch in Abbildung 2 dargestellt. Anschließend führten wir erneut einen Nullabgleich durch. Dann nahmen wir die Kennlinie der Ausgangsspannung als Funktion der Eingangsspannung auf. Selbiges wiederholten wir für die Untersuchung des Sättigungsverhaltens mit einem erhöhten Ausgangswiderstand und mit Belastung des Ausgangs durch drei verschiedene Lastwiderstände.



Abbildung 2: Schaltbild eines Spannungsfolgers

# 4 Messung

#### 4.1 Invertierender Verstärker

Nach dem Aufbau der Operationsverstärkergrundschaltung mit  $R_1 = R'_1 = 4,7 \,\mathrm{k}\Omega$  und nach dem Nullabgleich, nahmen wir bei einem sinusförmigen Eingangssignal den Frequenzgang für einen Widerstand  $R_2 = 47 \,\mathrm{k}\Omega$  und  $470 \,\mathrm{k}\Omega$  auf. Dabei entschieden wir uns die Amplitude der Ausgangsspannung (Messung Peak to Peak) mit dem Oszilloskop für die Frequenzen

 $\nu = 100,300 \,\mathrm{Hz}, 1, 3, 10 \,\mathrm{kHz}$  und 20, 50, 100 kHz. Für den kleineren Widerstand wählten wir eine Amplitude der Eingangsspannung von 10 mV. Für den größeren ohmschen Widerstand wählten wir die zehnfache Amplitude. Die Ergebnisse dieser Messreihen befinden sich in: Tabelle 2 Die Fehler schätzten wir auf Basis der Schwankungen in der Anzeige des Oszilloskops ab.

Den Frequenzgang eines frequenzabhängigen Verstärkers für den komplexen Widerstand  $Z_2 = (R_{2,par} = 470 \,\mathrm{k\Omega parallel mit}C_2 = 2,2 \,\mathrm{nF})$  maßen wir in einem 1-2-5-Raster mit den Zwischenschritten 1,5-3-7. Das ergab die Ergebnisse aus Tabelle 3 Die Fehler schätzten wir wieder auf Basis der Schwankungen in der Anzeige des Oszilloskops ab.

Da die Amplitude der Ausgangsspannung sich über den gesamten Messbereich hin stark veränderte, mussten wir verschiedene Auflösungen am Oszilloskop einstellen. Bis zu Frequenzen von 0,2 kHz wählten wir eine Auflösung von 20 mV, ab dort bis zu Frequenzen von 2 kHz wählten wir eine Auflösung von 2 V, dann bis zu 20 kHz eine Auflösung von 200 mV und ab dort eine Auflösung von 50 mV. In dem zuletzt verwendeten kleinen Messbereich schwankte die Amplitude der Ausgangsspannung allerdings stark.

#### 4.2 Integrator

Hier verwendeten wir als Eingangssignal eine Rechteckverlauf von 100 mV (Peak to Peak). Dann untersuchten wir für die beiden Widerstände  $R_2 = 47 \text{ k}\Omega$  und  $470 \text{ k}\Omega$  parallel zu dem Kondensator mit der Kapazität  $C_2 = 2,2 \text{ nF}$  im Rückkopplungszweig die Form sowie die Amplitude des Ausgangssignals in Abhängigkeit der Frequenz. Die Messungen führten wir in einem 1-3-Raster durch, wobei wir für den kleineren Widerstand bis zu Frequenzen von 0,3 kHz wir am Oszilloskop eine Division von 50 V, bei einer Frequenz von 1 kHz eine Division von 20 V, bei einer Frequenz von 3 kHz eine Division von 5 V und bis zu Frequenzen von 100 kHz am Oszilloskop eine Division von 5 V und bis zu Frequenzen von 100 kHz am Oszilloskop eine Division von 2 V einstellten. Für den größeren Widerstand wählten wir die Divisions 10 V, 1 V und 0,2 V. Unsere Messdaten mit den je nach verwendeter Auflösung abgeschätzten Fehlern befinden sich in Tabelle 4 und Tabelle 5.

#### 4.3 Spannungsfolger

Nach Modifikation der Schaltung, führten wir einen Nullabgleich bei einer Eingangsspannung von 1,5 V durch. Dann nahmen wir  $U_{\rm A} - U_{\rm E}$  als Funktion der Eingangsspannung zwischen -15 V und 15 V auf. Erst nahmen wir die Werte im positiven Bereich auf, wobei wir die Eingangsspannung mit einem Verstellrädchen in an die Änderung von  $U_{\rm A} - U_{\rm E}$  angepassten Schritten erhöhten. Es ließen sich, wie man in Tabelle 6 sieht, allerdings nur Werte für  $U_{\rm A} - U_{\rm E}$  bis etwa zu einer Eingangsspannung von 12 V messen. Danach betrug die angezeigte Spannungsdifferenz stets null. Auf die in diesem Versuchsteil mit dem Multimeter gemessenen Werte wählten wir entsprechend unserer Erfahrung mir früheren Versuchen einen Fehler von 3% des Messwertes + 1 Digit. Die ersten Messwerte bis zu einer Eingangsspannung von etwa 10,5 V schwankten allerdings so stark, dass wir hier noch einmal eine Abweichung von  $\pm 1$  V quadratisch zum Fehler dazu addieren.

Nach Umpolung des Netzgerätes nahmen wir die selbe Messreihe für die negativen Eingangsspannungen auf. Die Ergebnisse befinden sich in Tabelle 7.

Selbiges wiederholten wir für die Untersuchung des Sättigungsverhaltens mit einem um 100  $\Omega$  erhöhten Ausgangswiderstand. Den Ausgang belasteten wir durch drei verschiedene Lastwiderstände, indem wir den Poti auf  $0 k\Omega, 3 k\Omega$  und den über die Ohm-Funktion des Multimeters maximal möglichen Wert 9,05 k $\Omega$  einstellten. In Reihe dazu schalteten wir noch einen Widerstand von 1 k $\Omega$ . Unsere Messpunkte wählten wir so, dass wir jeweils die Ausgangsströme so einstellten, dass wir den maximal möglichen Bereich möglichst gleichmäßig abdeckten. Unsere Messreihen zu diesem Teil des Versuchs befinden sich in Tabelle 8, Tabelle 9 und Tabelle 10.

### 5 Auswertung

#### 5.1 Invertierender Verstärker

Bevor wir unsere Messdaten aus Tabellen 2 und 3 graphisch auftragen, wollen wir uns zunächst Gedanken über den Kurvenverlauf für die komplexen Rückkopplungsimpedanzen machen. Die Verstärkung A ist – wie schon in den theoretischen Grundlagen in Gleichung (4) gegeben – durch das Verhältnis der Widerstände, bzw. Impedanzen gegeben. Mit einer Rückkopplungsimpedanz, die durch

$$\frac{1}{Z_2} = \frac{1}{R_{2,\text{par}}} + \mathrm{i}\omega C_2 \tag{6}$$

gegeben ist, lässt sich die Verstärkung berechnen als

$$A = \frac{1}{R_1} \frac{1}{\frac{1}{R_{2,\text{par}}} + i\omega C_2}$$
  
=  $\frac{1}{R_1} \frac{R_{2,\text{par}}}{1 + i\omega C_2 R_{2,\text{par}}}$   
=  $\frac{R_{2,\text{par}}}{R_1} \frac{1 - i\omega C_2 R_{2,\text{par}}}{1 + (\omega C_2 R_{2,\text{par}})^2}.$  (7)

Der Betrag von A bestimmt das Verhältnis der Amplituden, bzw. Spitzenwerte, der Spannung. Dieser berechnet sich folgendermaßen:

$$|A| = \sqrt{\text{Re}^2 A + \text{Im}^2 A} = \frac{R_{2,\text{par}}}{R_1} \frac{1}{\sqrt{1 + (\omega C_2 R_{2,\text{par}})^2}}.$$
(8)

Mit den von uns verwendeten Bauteilen  $R_1 = 4.7 \,\mathrm{k\Omega}$ ,  $R_{2,\mathrm{par}} = 470 \,\mathrm{k\Omega}$  und  $C_2 = 2.2 \,\mathrm{nF}$  sowie  $\omega = 2\pi f$  erhalten wir für den theoretischen Verlauf der Verstärkung für die komplexe Rückkopplungsimpedanz:

$$|A|(f) = \frac{100}{\sqrt{1 + (2\pi f \cdot 2, 2\,\mathrm{nF} \cdot 470\,\mathrm{k}\Omega)^2}} \tag{9}$$

Nun lässt sich die theoretische Rückkopplungsimpedanz zusammen mit den anderen Impedanzen aus Tabellen 2 und 3 in einem Diagramm auftragen. Dies ist in Abbildung 3 getan. Die theoretisch bestimmte Verstärkung ist in der Legende mit  $|A_{\rm th}|$  gekennzeichnet. Ebenfalls eingezeichnet ist die Grenz-



Abbildung 3: Verstärkungskurven der beiden verwendeten ohmschen Rückkopplungswiderstände und der Rückkopplungsimpedanz, sowie der theoretisch vorhergesagte Kurvenverlauf, welcher mit einem Faktor von 21,5 multipliziert wurde

frequenz  $f_{\rm Gr}$ , die sich aus der Zeitkonstanten  $\tau = R_{2,\rm par}C_2$  folgendermaßen berechnen lässt:

$$f_{\rm Gr} = \frac{1}{\tau} = \frac{1}{R_{2,\rm par}C_2} = 0,97 \,\rm kHz$$
 (10)

Zum Diagramm sei zusätzlich angemerkt, dass die theoretische Vorhersage  $|A_{\rm th}|(f)$  mit dem Faktor 21,5 multipliziert wurde, was in etwa der von uns abgeschätzten Verstärkung des zweiten Channels des verwendeten Oszilloskops entspricht.

Die Rückkopplungsimpedanz  $Z_2$  berechnet sich, da eine Parallelschaltung vorliegt (vgl. Gleichung (6)), aus

$$Z_2 = \frac{1}{1/R_2 + i\omega C}.$$
 (11)

Daraus folgt für den Betrag von  $Z_2$ :

$$|Z_2| = \frac{R_2}{\sqrt{1 + \omega^2 R_2^2 C^2}}.$$
(12)

Aus der Formel für den Betrag wird erkennbar, dass bei der Impedanz für sehr kleine Frequenzen der kapazitive Anteil vernachlässigbar wird, weil hier der Kondensator vollständig sperrt. Aus Gleichung (8) erkennt man dann auch, dass sich die Verstärkung des komplexen Widerstandes für geringe Frequenzen dem Wert

$$R_{a,\text{par}}/R_1 \approx 100 \tag{13}$$

annähert. Da wir wie bereits angemerkt, an der Anzeige unseres Oszilloskops etwa eine Verstärkung von 21,5 haben, stimmt dieser Wert sehr gut mit dem Wert für kleine Frequenzen in Abb. 3 überein.

Für sehr große Frequenzen folgt aus Gleichung (12) und Gleichung (8), dass die Verstärkung für den komplexen Widerstand verschwindet. Auch dies ist im Diagramm deutlich erkennbar.

#### 5.2 Integrator

Ein Integrator integriert wie der Name schon sagt mittels

$$U_A(t) = \frac{-1}{R_1 C_2} \int U_{\rm E} \,\mathrm{d}t \,. \tag{14}$$

Daher resultiert theoretisch aus einer rechteckigen Eingangsspannung eine dreieckige Ausgangsspannung. Diesen Zusammenhang konnten wir auch für ausreichend hohe Frequenzen und den damit verbundenen kleinen Ausgangsspannungen bestätigen (vgl. Abb. 4) Ebenfalls in Abb. 4 im Anhang ist erkennbar, dass das Ausgangssignal für kleinere Frequenzen immer stärker deformiert wird. Der Grund dafür ist die exponentielle Auf- und Entladekurve:

$$U_C(t) = |U_0|(1 - e^{\frac{-t}{RC}})U_C(t) = |U_0|e^{\frac{-t}{RC}}$$
(15)



Abbildung 4: Form des Ausgangssignals als Funktion der Frequnez

des Kondensators. Dieser bewirkt durch seine Entladung während der äußeren Aufladung eine Verzögerung der Ausgangsspannung bzgl. des theoretisch erwarteten Verlaufs. Die theoretisch erwartete Dreieckssignal überlagert sich mit mit der Entladekurve des Kondensators, was die veränderte Form des Signals bei kleineren Frequenzen erklärt. Für zunehmende Frequenzen "kommt der Kondensator mit seiner Auf- bzw. Entladung nicht mehr schnell genug hinterher", wodurch der Effekt dann zunehmend an Einfluss verliert. Die Stärke des Einflusses wird dabei durch die Zeitkonstante  $\tau = RC$  bestimmt. Für einen größeren Widerstand ist die Zeitkonstante größer. Daraus resultiert, dass der Kondensator länger zum Auf- bzw. Entladen braucht. Das erklärt auch, warum sich für den höheren Widerstand  $R_2 = 470 \,\mathrm{k}\Omega$  die erwartete Dreiecksspannung bereits bei um den Faktor zehn geringeren Frequenzen entsprechend der im Vergleich zu  $R'_2 = 47 \,\mathrm{k\Omega}$  um den selben Faktor höheren charakteristischen Zeitkonstante einstellt (vgl. Abb. 4). Der Effekt der Abweichung von der erwarteten Dreiecksspannung lässt sich noch deutlicher erkennen, wenn man einen zusätzlichen Widerstand parallel schaltet, denn dieser drückt die wachsende Spannung bereits wieder ab. Die Form des Ausgangssignals kann folglich durch die Wahl eines geeignet gewählten Parallelwiderstandes variiert werden. Die gewünschte Funktion als Integrator, also das Erhalten einer Dreiecksspannung, wird jedoch nur bei ausreichend hohen Frequenzen und mit eher höherem Widerstand  $R_{C,par}$  erreicht.

#### 5.3 Spannungsfolger

In Abbildungen 5 und 6 ist die Ausgangsspannung  $U_{\rm A}$ , bzw. die Differenz zwischen Aus- und Eingangsspannung  $U_{\rm A} - U_{\rm E}$ , auf die Eingangsspannung  $U_{\rm E}$  für die Erhöhung der Spannung von 0 V auf 12 V abgebildet. Die Unsicherheiten auf die Ausgangsspannung errechnen sich wegen

$$U_{\rm A} = (U_{\rm A} - U_{\rm E}) + U_{\rm E} \tag{16}$$

aus Gaußscher Fehlerfortpflanzung durch

$$s_{U_{\rm A}} = \sqrt{s_{U_{\rm A}}^2 - U_{\rm E}} + s_{S_{\rm E}}^2}.$$
 (17)

Analog wurden in Abbildungen 7 und 8 die (negative) Ausgangsspannung, bzw. die Differenz zwischen Aus- und Eingangsspannung, auf die Eingangsspannung aufgetragen. Der Fehler auf die Ausgangsspannung berechnet sich dabei genau wie in Gleichung (17).



Abbildung 5: Ausgangsspannung  $U_A$  aufgetragen auf die zugehörige Eingangsspannung. Der Übersicht wegen wurden im Bereich 9 V bis 12 V zwei Drittel der Datenpunkte nicht abgebildet.

#### 5.4 Sättigungsverhalten

In Abbildung 9 erkennt man das Sättigungsverhalten für die verschiedenen verwendeten Lastwiderstände. Dabei fällt auf, dass der Beginn der Sättigung im Hinblick auf die Eingangs- als auch die Ausgangsspannung abhängig von



Abbildung 6: Differenz zwischen Aus- und Eingangsspannung in Abhängigkeit von letzerer ausgehend von Tabelle 6.



Abbildung 7: Negative Ausgangsspannung  $-U_A$  aufgetragen auf die zugehörige (negative) Eingangsspannung. Der Übersicht wegen wurden im Bereich 10 V bis 12,5 V drei Viertel der Datenpunkte nicht abgebildet.



Abbildung 8: Differenz zwischen Aus- und Eingangsspannung in Abhängigkeit von letzerer ausgehend von Tabelle 7.



Abbildung 9: Verlauf der Ausgangsspannung  $U_{\rm A}$  zu gegebener Eingangsspannung  $U_{\rm E}$  für verschiedene Widerstände. Eingezeichnet sind zusätzlich die von uns abgeschätzten Sättigungsspannungen  $U_{\rm S}$ .

der Größe des verwendeten Lastwiderstandes ist und mit diesem zunimmt, da an jenem dann eine höhere Spannung abfällt.

Für die drei Lastwiderstände kann man aus Abb. 9 für die positive Sättigungsspannung folgende Werte ablesen:

$$U_{\rm S}^{0,00\,\mathrm{k}\Omega} = (11,60\pm0,25)\,\mathrm{V}$$
  

$$U_{\rm S}^{3,00\,\mathrm{k}\Omega} = (12,60\pm0,27)\,\mathrm{V}$$
  

$$U_{\rm S}^{9,05\,\mathrm{k}\Omega} = (13,05\pm0,23)\,\mathrm{V}$$
  
(18)

Die Fehler haben wir dabei dadurch abgeschätzt, dass wir die gemittelten Unsicherheiten der zur Bestimmung der Sättigungsspannung relevanten Datenpunkte gemittelt und durch die Wurzel der Anzahl dieser Datenpunkten dividiert haben<sup>1</sup>. Die Widerstandsabhängigkeit erklärt auch, warum die Kurven jetzt deutlich früher in den horizontalen Sättigungsbereich einknicken im Vergleich zu Messung 3.1.



Abbildung 10: Sättigungsspannung  $U_{\rm S}$  in Abhängigkeit vom (abgeschätzten) Laststrom  $I_{\rm A}$ . Eingezeichnet ist eine Ausgleichsgerade.

Die effektive Sättigungsspannung ist eine Frage der Belastung, d.h. des Ausgangsstromes. Dieser beträgt, wie aus Tabellen 8 bis 10 ungefähr abge-

<sup>&</sup>lt;sup>1</sup>Selbstverständlich wäre auch eine Abschätzung per Auge möglich gewesen, allerdings sind die von uns bestimmten Unsicherheiten unserer Meinung quantitativ zufriedenstellend.

schätzt werden kann, für die jeweiligen Belastungen

$$\begin{split} I_{\rm A}^{0,00\,{\rm k}\Omega} &= (11,40\pm0,34)\,{\rm mA},\\ I_{\rm A}^{3,00\,{\rm k}\Omega} &= (3,05\pm0,09)\,{\rm mA},\\ I_{\rm A}^{9,05\,{\rm k}\Omega} &= (1,30\pm0,04)\,{\rm mA}. \end{split} \tag{19}$$

Der Fehler auf die Lastströme ist dabei ausschließlich aus der Messungenauigkeit des verwendeten Multimeters zustandegekommen.

Zur Untersuchung des Zusammenhang dieser und der Sättigungsspannung, trugen wir das Verhältnis beider zueinander graphisch in Abbildung 10 auf. Hierbei verwendeten wir *nicht* den Wert der ersten Messreihe (ohne  $R_A$ ), da wir in dieser Messreihe innerhalb des von uns betrachteten Spannungsbereichs keine Sättigung feststellen konnten. Die zweite Messreihe (in der der Berech 0 V bis -12 V abgetastet werden sollte) wird ebenfalls nicht für die Sättigungskurve verwendet, da wir einen systematischen Fehler in diesem Versuchsteil vermuten (siehe Abschnitt 6.3).

Das Diagramm zeigt, dass die Sättigungsspannung sehr genau linear mit der Stromstärke bei Sättigung abnimmt. Dieses Verhalten ist uns von realen Strom- und Spannungsquellen her bekannt und so auch wieder auf den schaltungsbedingten Ausgangswiderstand zurückzuführen. Die Linearität können wir auch quantitativ untersuchen, indem wir eine lineare Regression mit Unsicherheiten durchführen<sup>2</sup>. Die Regression von

$$U_{\rm S}(I_{\rm A}) = \aleph I_{\rm A} + \beth \tag{20}$$

führt uns auf die geschätzten Parameter

$$\aleph = (-1,38 \pm 0,03) \cdot 10^{-1} \frac{V}{mA},$$

$$\square = (1,32 \pm 0,02) \cdot 10^{1} V.$$
(21)

Der OV selbst besitzt einen dynamischen Ausgangswiderstand. Dieser berechnet sich über Gleichung (5), kann aber auch mit  $r_{A,0} = -\aleph$  über die Regression bestimmt werden:

$$r_{\rm A,0} = (1,38 \pm 0,03) \cdot 10^2 \,\Omega \tag{22}$$

Dieser Zusammenhang (20) kann dabei natürlich nur für große Sättigungsspannungen gelten, weil  $U_{\rm S}$  positiv sein muss.

### 6 Diskussion

#### 6.1 Invertierender Verstärker

Für rein ohmsche Widerstände konnten wir in diesem Versuchsteil verifizieren, dass zumindest für nicht zu hohe Frequenzen die Verstärkung mit

 $<sup>^2 \</sup>mathrm{Da}$ uns die statistischen Methoden an dieser Stelle fehlen, vernachlässigen wir hier den Fehler auf den Laststrom  $I_\mathrm{A}.$ 

einem theoretisch erwarteten Faktor von etwa 210 bzw. 2100 unabhängig von der eingestellten Frequenz ist und direkt mit dem verwendeten Arbeitswiderstand zunimmt. Das "Abknicken" bei sehr hohen Frequenzen ist darauf zurückzuführen, dass die hohe Leerlaufverstärkung des OVs nicht bis zu hohen Frequenzen hin aufrecht erhalten werden kann. Für größere Widerstände findet dieses "Abknicken" früher statt, als für kleinere Widerstände. Deswegen können wir den Knick in der Verstärkungskurve für den kleineren Widerstand nicht in unserem Messbereich erkennen.

Bei der Betrachtung der Verstärkungskennlinie für die komplexe Belastung fällt auf, dass die praktisch gemessenen Werte immer etwas unter den theoretisch erwarteten liegen. Der Grund dafür könnte ein systematischer Fehler, wie die Eichtoleranz des Frequenzgenerators oder die große eigene Verstärkung von einem Faktor von etwa 21,5 des Oszilloskops verantwortlich sein. Es können aber auch statistische Unsicherheiten, wie die Ableseungenauigkeit eine Rolle spielen. Zudem mussten wir für unsere Messungen öfter die Auflösung am Oszilloskop ändern, was ebenso zu einer Verfälschung der Messdaten führen konnte.

Trotzdem ist aber gut erkennbar, dass sich die Verstärkungskennlinie für die komplexe Belastung in den Grenzfällen für sehr große und sehr kleine Frequenzen den erwarteten Werten annähert.

#### 6.2 Integrator

Aus unseren Messergebnissen konnten wir erkennen, dass das theoretisch erwartete Dreieckssignal sich überlagert sich mit der Auf- und Entladekurve des Kondensators überlagert. Dies erklärt die veränderte Form des Signals bei kleineren Frequenzen. Für zunehmende Frequenzen verliert der Effekt dann zunehmend an Einfluss. Die Stärke des Einflusses wird dabei durch die Zeitkonstante  $\tau = RC$  bestimmt. Weil für einen größeren Widerstand ist die Zeitkonstante größer ist, braucht der Kondensator länger zum Aufbzw. Entladen. Bei einem höheren Widerstand stellt sich die das erwartete Dreieckssignal früher ein, als bei einem kleinen Widerstand.

Die Form des Ausgangssignals kann durch die Wahl eines geeignet gewählten Parallelwiderstandes variiert werden. Die gewünschte Funktion als Integrator, also das Erhalten einer Dreiecksspannung, kann jedoch nur bei ausreichend hohen Frequenzen und mit eher höherem Widerstand  $R_{C,par}$ erreicht werden.

#### 6.3 Spannungsfolger

Wie man in Abbildung 5 sehen kann, ist es uns nicht gelungen, bei einer Erhöhung der Eingangsspannung von 0V auf 15V die vorhergesagte Sättigung zu erreichen. Auch interessant ist die Tatsache, dass Datenpunkte, die oberhalb von 12V aufgenommen wurden, keine Differenz (d.

h.  $U_{\rm A} - U_{\rm E} = 0 \,\rm V$ ) zwischen Aus- und Eingangsspannung erbracht haben. Diesen Umstand kann man teilweise in Abb. 6 sehen<sup>3</sup>. Anders sieht es hingegen in der Messung der Ausgangsspannung bei einer negativen Eingangsspannung aus: Wie man in Abbildung 7 gut sehen kann, ist oberhalb von 12 V ein Spannungsplateau erreicht und die Ausgangsspannung erhöht sich nicht merklich. Dies sieht man ebenfalls gut in Abbildung 8, wo die Spannungsdifferenz knapp unter 12 V einen scharfen Knick macht und daraufhin stark anwächst. Prinzipiell ist dieses Anwachsen auch in Abb. 6 sichtbar, jedoch bricht das Abfallen der Spannung bei null ab. Da wir einen systematischen oder gar groben Fehler in diesem Versuchsaufbau vermuten, haben wir die hier gewonnenen Daten über das Spannungsplateu nicht weiter bei der Bestimmung des dynamischen Ausgangswiderstands im darauffolgenden Auswertungsabschnitt verwendet.

#### 6.4 Sättigungsverhalten

Aus unseren Messergebnissen konnten wir folgern, dass der Beginn der Sättigung im Hinblick auf die Eingangs- als auch die Ausgangsspannung abhängig von der Größe des verwendeten Lastwiderstandes ist und mit diesem zunimmt, da an jenem dann eine höhere Spannung abfällt.

Für die drei Lastwiderstände kann man aus Abb. 9 für die positive Sättigungsspannung folgende Werte ablesen:

$$U_{\rm S}^{0,00\,\mathrm{k}\Omega} = (11,60\pm0,25)\,\mathrm{V}$$
  

$$U_{\rm S}^{3,00\,\mathrm{k}\Omega} = (12,60\pm0,27)\,\mathrm{V}$$
  

$$U_{\rm S}^{9,05\,\mathrm{k}\Omega} = (13,05\pm0,23)\,\mathrm{V}$$
(23)

Die effektive Sättigungsspannung ist dabei abhängig vom Ausgangsstrom. Dieser beträgt für die jeweiligen Belastungen

$$\begin{split} I_{\rm A}^{0,00\,{\rm k}\Omega} &= (11,\!40\pm0,\!34)\,{\rm mA},\\ I_{\rm A}^{3,00\,{\rm k}\Omega} &= (3,\!05\pm0,\!09)\,{\rm mA},\\ I_{\rm A}^{9,05\,{\rm k}\Omega} &= (1,\!30\pm0,\!04)\,{\rm mA}. \end{split} \tag{24}$$

Aus dem Zusammenhang zwischen Spannungs- und Stromverlauf konnten wir für große Sättigungsspannungen den dynamischen Ausgangswiderstand

$$r_{\rm A,0} = (1,38 \pm 0,03) \cdot 10^2 \,\Omega \tag{25}$$

bestimmen.

Bei der scheinbar geringen Unsicherheit muss man allerdings Vorsicht walten lassen: Zum einen basiert der Fehler auf die Spitzenspannung  $U_{\rm S}$ 

 $<sup>^3 \</sup>rm Wie$  in der Messung bereits erwähnt, hörten wir knapp oberhalb von  $12\,\rm V$ auf, weitere Datenpunkte aufzunehmen.

auf der Bildung des Mittelwerts von zwei, bzw. drei, Messwerten, was keine allzu hohe Stichprobengröße darstellt. Es wäre daher sehr wünschenswert, wenn mehr Messpunkte – insbesondere im Bereich des Ausgangsspannungsplateaus – aufgenommen werden würden. Zusätzlich stellt auch die Simplifizierung durch die lineare Regression eine Fehlerquelle dar: Da diese nur Fehler bezüglich  $U_{\rm S}$  miteinbezieht und den Fehler auf  $I_{\rm A}$  komplett vernachlässigt, ist bei den Ergebnissen der Regression Vorsicht geboten; besonders dann, wenn die Unsicherheiten auf  $I_{\rm A}$  in der gleichen Größenordnung wie die auf  $U_{\rm S}$  liegen, kann die Regression u. U. falsche Werte (und auch falsche Unsicherheiten auf diese) liefern.

# A Anhang

|          | $U_{\rm SS}^{\rm A}$ in V   |                              |  |
|----------|-----------------------------|------------------------------|--|
| f in kHz | $R_2 = 47 \mathrm{k}\Omega$ | $R_2 = 470 \mathrm{k}\Omega$ |  |
| $^{0,1}$ | $2{,}40\pm0{,}04$           | $21{,}60\pm0{,}40$           |  |
| $0,\!3$  | $2{,}44\pm0{,}04$           | $21{,}60\pm0{,}40$           |  |
| $1,\!0$  | $2{,}40\pm0{,}04$           | $21{,}60\pm0{,}40$           |  |
| $^{3,0}$ | $2{,}44 \pm 0{,}04$         | $22{,}00\pm0{,}40$           |  |
| 10,0     | $2{,}40\pm0{,}04$           | $21{,}00\pm0{,}40$           |  |
| 20,0     | $2{,}40\pm0{,}04$           | $18{,}80\pm0{,}40$           |  |
| 50,0     | $2{,}40\pm0{,}04$           | $12{,}20\pm0{,}40$           |  |
| 100,0    | $2{,}36\pm0{,}04$           | $7{,}40\pm0{,}40$            |  |

Tabelle 2: Spannungsamplituden  $U_{SS}^{A}$  in Abhängigkeit von der Frequenz f bei verschiedenen Lastwiderständen  $R_2$ . Die Eingangsamplitude beträgt Spitzezu-Spitze gerade 10 mV.

| f in kHz  | $U_{\rm SS}^{\rm A}$ in V | f in kHz | $U_{\rm SS}^{\rm A}$ in V |
|-----------|---------------------------|----------|---------------------------|
| 0,015     | $21{,}60\pm0{,}80$        | 1,5      | $2{,}00\pm0{,}08$         |
| 0,020     | $21{,}60\pm0{,}80$        | 2        | $1{,}52\pm0{,}08$         |
| 0,030     | $20{,}80\pm0{,}80$        | 3        | $1{,}14\pm0{,}08$         |
| $0,\!050$ | $20{,}00\pm0{,}80$        | 5        | $0{,}66 \pm 0{,}08$       |
| 0,070     | $19{,}20\pm0{,}80$        | 7        | $0,\!47\pm0,\!08$         |
| $0,\!100$ | $17{,}20\pm0{,}80$        | 10       | $0,\!35\pm0,\!08$         |
| $0,\!150$ | $14{,}40\pm0{,}80$        | 15       | $0,\!25\pm0,\!08$         |
| 0,200     | $12{,}00\pm0{,}80$        | 20       | $0{,}21\pm0{,}08$         |
| 0,300     | $9{,}60\pm0{,}80$         | 30       | $0{,}15\pm0{,}08$         |
| 0,500     | $5{,}60\pm0{,}08$         | 50       | $0{,}12\pm0{,}01$         |
| 0,700     | $4{,}16\pm0{,}08$         | 70       | $0{,}10\pm0{,}01$         |
| 1000      | $2{,}96 \pm 0{,}08$       | 100      | $0{,}08\pm0{,}01$         |

Tabelle 3: Spannungsamplituden  $U_{\rm SS}^{\rm A}$  in Abhängigkeit von der Frequenz ffür den Rückkopplungswiderstand $R_{2,\rm par}=470\,\rm k\Omega$ parallel zu $C_2=2,2\,\rm nF$ 

| f in kHz | $U_{\rm SS}^{\rm A}$ in V |
|----------|---------------------------|
| 0,1      | $202 \pm 8$               |
| $0,\!3$  | $130 \pm 8$               |
| 1        | $46,0\ \pm 0,8$           |
| 3        | $16,0\ \pm 0,8$           |
| 10       | $4{,}88\pm0{,}08$         |
| 30       | $1{,}92\pm0{,}08$         |
| 100      | $0{,}72\pm0{,}08$         |

Tabelle 4: Spannungsamplituden  $U_{\rm SS}^{\rm A}$  in Abhängigkeit von der Frequenzffür den Rückkopplungswiderstand $R_2=470\,{\rm k}\Omega$ 

| f in kHz | $U_{\rm SS}^{\rm A}$ in V |
|----------|---------------------------|
| 0,1      | $22,00 \pm 0,40$          |
| $0,\!3$  | $21{,}60\pm0{,}40$        |
| 1        | $20{,}80\pm0{,}40$        |
| 3        | $13{,}20\pm0{,}40$        |
| 10       | $4{,}88 \pm 0{,}08$       |
| 30       | $1{,}84 \pm 0{,}08$       |
| 100      | $0{,}72\pm0{,}08$         |

Tabelle 5: Spannungsamplituden  $U_{\rm SS}^{\rm A}$  in Abhängigkeit von der Frequenzffür den Rückkopplungswiderstand $R_2=470\,{\rm k}\Omega$ 

| $U_{\rm E}$ in V   | $U_{\rm A}-U_{\rm E}$ in mV | $U_{\rm A}$ in V    |
|--------------------|-----------------------------|---------------------|
| $0,00 \pm 0,10$    | $3{,}90\pm0{,}22$           | $0,00\pm0,14$       |
| $3{,}00\pm0{,}19$  | $16{,}50\pm0{,}59$          | $3,\!02\pm0,\!21$   |
| $6{,}00\pm0{,}28$  | $25{,}90\pm0{,}88$          | $6{,}03\pm0{,}30$   |
| $9{,}00\pm0{,}37$  | $27{,}90\pm0{,}94$          | $9{,}03 \pm 0{,}38$ |
| $9{,}50\pm0{,}39$  | $25{,}00\pm0{,}85$          | $9{,}53 \pm 0{,}40$ |
| $10{,}00\pm0{,}40$ | $28{,}00\pm0{,}94$          | $10{,}03\pm0{,}41$  |
| $10{,}50\pm0{,}42$ | $26{,}50\pm0{,}89$          | $10{,}53\pm0{,}43$  |
| $11{,}00\pm0{,}43$ | $22{,}00\pm0{,}76$          | $11{,}02\pm0{,}44$  |
| $11,\!10\pm0,\!43$ | $19{,}90\pm0{,}70$          | $11{,}12\pm0{,}44$  |
| $11{,}20\pm0{,}44$ | $17{,}50\pm0{,}62$          | $11{,}22\pm0{,}45$  |
| $11{,}30\pm0{,}44$ | $14{,}40\pm0{,}53$          | $11{,}31\pm0{,}45$  |
| $11,\!40\pm0,\!44$ | $11,\!30\pm0,\!44$          | $11{,}41\pm0{,}45$  |
| $11{,}50\pm0{,}44$ | $8{,}50\pm0{,}35$           | $11{,}51\pm0{,}46$  |
| $11{,}55\pm0{,}45$ | $6{,}00\pm0{,}28$           | $11{,}56\pm0{,}46$  |
| $11{,}60\pm0{,}45$ | $5{,}50\pm0{,}27$           | $11{,}61\pm0{,}46$  |
| $11,\!65\pm0,\!45$ | $2{,}20\pm0{,}17$           | $11,\!65\pm0,\!46$  |
| $11,\!70\pm0,\!45$ | $2{,}10\pm0{,}16$           | $11,\!70\pm0,\!46$  |
| $11,\!75\pm0,\!45$ | $0{,}00\pm0{,}10$           | $11,\!75\pm0,\!46$  |
| $11{,}80\pm0{,}45$ | $0{,}00\pm0{,}10$           | $11{,}80\pm0{,}46$  |

Tabelle 6: Ausgangsspannung als Funktion der positiven Eingangsspannung

| $U_{\rm E}$ in V | $U_{\Lambda} - U_{\rm E}$ in mV     |
|------------------|-------------------------------------|
| 0.00             | $\frac{O_{\rm A}}{104.00 \pm 0.15}$ |
| 0,00             | $194,00 \pm 0,15$                   |
| -3,00            | $189,70 \pm 0,11$                   |
| -0,00            | $191,99 \pm 0,13$                   |
| -9,0             | $186,79 \pm 0,20$                   |
| -11,00           | $185,29 \pm 0,25$                   |
| -11,20           | $144,19 \pm 0,26$                   |
| -11,30           | $88,\!59 \pm 0,\!26$                |
| -11,40           | $4,\!81\pm0,\!26$                   |
| -11,50           | $5{,}91\pm0{,}26$                   |
| $-11,\!60$       | $7{,}01\pm0{,}27$                   |
| $-11,\!80$       | $9,\!31\pm0,\!27$                   |
| -12,00           | $11{,}61\pm0{,}28$                  |
| $-12,\!20$       | $11{,}81\pm0{,}28$                  |
| $-12,\!30$       | $6{,}81 \pm 0{,}29$                 |
| $-12,\!35$       | $0{,}09\pm0{,}29$                   |
| $-12,\!36$       | $7{,}99 \pm 0{,}29$                 |
| $-12,\!37$       | $21{,}09\pm0{,}29$                  |
| $-12,\!40$       | $87{,}69\pm0{,}29$                  |
| $-12,\!45$       | $465,\!99 \pm 0,\!30$               |
| -12,50           | $525{,}99\pm0{,}30$                 |
| $-12,\!60$       | $724{,}99\pm0{,}30$                 |
| -12,70           | $759{,}99\pm0{,}31$                 |
| $-12,\!80$       | $633{,}99\pm0{,}31$                 |
| $-12,\!90$       | $500,\!99 \pm 0,\!31$               |
| -13,00           | $269,\!99 \pm 0,\!31$               |
| $-13,\!25$       | $129{,}99\pm0{,}32$                 |
| -13,502          | $26799,\!99\pm0,\!95$               |
| -13,752          | $26899,\!99\pm0,\!96$               |
| -14,002          | $27199,\!99\pm0,\!97$               |

Tabelle 7: Ausgangsspannung als Funktion der negativen Eingangsspannung

| $U_{\rm E}$ in V   | $U_{\rm A} - U_{\rm E}$ in V | $U_{\rm A}$ in V     | $I_{\rm A}$ in mA  |
|--------------------|------------------------------|----------------------|--------------------|
| $1,00 \pm 0,13$    | $0,000 \pm 0,100$            | $1,00 \pm 0,16$      | $1,00 \pm 0,13$    |
| $1{,}52\pm0{,}15$  | $0{,}000\pm0{,}100$          | $1{,}52\pm0{,}18$    | $1{,}50\pm0{,}15$  |
| $6{,}03\pm0{,}28$  | $0{,}000\pm0{,}100$          | $6{,}03\pm0{,}30$    | $6{,}00\pm0{,}28$  |
| $11,\!06\pm0,\!43$ | $0{,}000\pm0{,}100$          | $11{,}06\pm0{,}44$   | $11{,}00\pm0{,}43$ |
| $12{,}00\pm0{,}46$ | $-0,327 \pm 0,090$           | $11{,}67 \pm 0{,}47$ | $11{,}60\pm0{,}45$ |
| $13{,}00\pm0{,}49$ | $-1,334 \pm 0,060$           | $11{,}67\pm0{,}49$   | $13{,}00\pm0{,}49$ |

Tabelle 8: Ausgangs<br/>spannung als Funktion der Eingangsspannung mit Poti auf <br/>  $0\,\mathrm{k}\Omega$ 

| $U_{\rm E}$ in V   | $U_{\rm A} - U_{\rm E}$ in V | $U_{\rm A}$ in V   | $I_{\rm A}$ in mA |
|--------------------|------------------------------|--------------------|-------------------|
| $4,00 \pm 0,22$    | $0,00\pm0,10$                | $4{,}00\pm0{,}24$  | $1,\!00\pm0,\!13$ |
| $6{,}00\pm0{,}28$  | $0,\!00\pm0,\!10$            | $6{,}00\pm0{,}30$  | $1{,}50\pm0{,}15$ |
| $8{,}00\pm0{,}34$  | $0,\!00\pm0,\!10$            | $8{,}00\pm0{,}35$  | $2{,}00\pm0{,}16$ |
| $9{,}00\pm0{,}37$  | $0,\!00\pm0,\!10$            | $9{,}00\pm0{,}38$  | $2{,}25\pm0{,}17$ |
| $10{,}00\pm0{,}40$ | $0,\!00\pm0,\!10$            | $10{,}00\pm0{,}41$ | $2{,}50\pm0{,}17$ |
| $11,\!97\pm0,\!46$ | $0,\!00\pm0,\!10$            | $11{,}97\pm0{,}47$ | $3{,}00\pm0{,}19$ |
| $15{,}10\pm0{,}55$ | $-2,\!19\pm0,\!03$           | $12{,}91\pm0{,}55$ | $3{,}21\pm0{,}20$ |

Tabelle 9: Ausgangs<br/>spannung als Funktion der Eingangsspannung mit Poti auf <br/>  $3\,\mathrm{k}\Omega$ 

| $U_{\rm E}$ in V   | $U_{\rm A} - U_{\rm E}$ in V | $U_{\rm A}$ in V   | $I_{\rm A}$ in mA |
|--------------------|------------------------------|--------------------|-------------------|
| $10,\!06\pm0,\!40$ | $0,\!020\pm0,\!100$          | $10{,}08\pm0{,}41$ | $1{,}00\pm0{,}13$ |
| $11{,}10\pm0{,}43$ | $0{,}013\pm0{,}100$          | $11{,}11\pm0{,}44$ | $1{,}10\pm0{,}13$ |
| $12,\!05\pm0,\!46$ | $0,\!000\pm0,\!100$          | $12,\!05\pm0,\!47$ | $1{,}20\pm0{,}14$ |
| $13,\!05\pm0,\!49$ | $0{,}000\pm0{,}100$          | $13,\!05\pm0,\!50$ | $1{,}30\pm0{,}14$ |
| $14{,}00\pm0{,}52$ | $-0,942 \pm 0,070$           | $13{,}06\pm0{,}52$ | $1{,}30\pm0{,}14$ |
| $15{,}00\pm0{,}55$ | $-1,938 \pm 0,040$           | $13{,}06\pm0{,}55$ | $1,\!30\pm0,\!14$ |

Tabelle 10: Ausgangs<br/>spannung als Funktion der Eingangsspannung mit Poti auf<br/>  $9,05\,\mathrm{k}\Omega$ 

# A.2 Laborheft

| Versuch 64: Operationsverstürkler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.3.19                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 1.) Vullalgleigh ± 300 NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
| Amplitude: 50mV Honv &= 1kH2 Rz= 470 k2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| a) & Chitz US CVI US CVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
| 0,3 704208 2149 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
| 3 208 2 40 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| 20 2/2 2 40 43 3 18 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
| 50 208 2,40 12;02<br>100 200 2 36 7 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| $\pm 204z$ $\pm 0.64$ $\pm 0.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| $\frac{1}{440000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $p_2 = 2 2 p_{\overline{T}}$ |
| 20mV 0:05 20,040,80 03 20,8 + 0.8<br>0,1 13,2 + 0.8 0 07 19 2 + 0.8 America 10 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |
| $\frac{1}{9000000} 0.2 1.2 0 \pm 0.8 1.5 1.4 4 \pm 0.8 1.0 \pm 0.0000 0.5 1.5 6 \pm 0.0000 3 1.4 2 \pm 0.8 1.0 \pm 0.8 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| au 200 V 5 0 6 6 4 3 1 0 9 1 0 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| Somv 20 0 208 15 0 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| Marke 100 608270 0102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
| $2$ a $h = 400$ mV/c $\theta = 0.0$ tech in the $h = 100$ mV/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| $\frac{1}{2} \int \frac{1}{16} $ |                              |
| 011 011 202 =8 MMM 4 0.1 22,000 - 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ing                          |
| dirzov 1 4610 top 1 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | intra                        |
| 5 200 / hiv 10 4, 28:00 MM div 10 4, 83:00 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M                            |
| 100 1 0,72 " div 200700 0,72 200 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "                            |
| Wullaber mit UE= 1,5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
| Ratalon > Up Un Up Bri and O.2 [v] [v] (3% and of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £ )                          |
| 201 0,00 095 30 schwarlet (212) 0 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
| 3,00 16,5<br>G & 25,3 K 11,40 11, 30 - 6,00 - 0,3 - 10,82 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,8                          |
| $9_{10}$ 27.9 11.60 8.25 - 8.60 - 0.4 - 10.83 -<br>950 1720 25 0 11.60 5 5 - 9.50 40.6 - 10.63 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9,8 23                       |
| 10, 22, 0 28, 0 11, 20 2, 11 - 10, 00 3, 9 - 11, 00 - 10, 50 26, 5 11, 80 0 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50 - 10, 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16,6                         |
| 11.00 22,0 14.35 0,0 -410-34 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | asp.                         |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-1-14-1-  |                    |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|----------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -11 33 +9 6        | 30a 2 non Doch (           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -11:35 -9'2.       | UTVI UNUTURE UT            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 11,30 + 3,1        | · dery on uterno p         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | - 11,40 441        | -3 182 5 20,5              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 11,42,13,7         | -6 18 11                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | - 11, 45 1 24, P   | 29 1868                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -11,50 52,8        | -11 5 38 1 11 -            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 711,55 82,3        | -11.70 144 7 1001          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -11,60 110,1       | - 1130 . 28 / -1280 689    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | - 11,05 /152,4     | -1140 -480 -12.90 501      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | - 11,76 ttt 239 24 | -415 - 59 - A15 - K70      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -11,80 0,272       | - MIG - 2                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 711,90 374         | -1, RO - 0 - 1, RO 26, 8   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -12 472            | -12 00 - 1 - NS, 10 26, 13 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | - 12,10 569        | -1220 10 - 14 1222         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | - 12, 20 673       | - 120 10                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 12,40 868          | 1235 01                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 12,30 968          | 12 20 20                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 1260 1066          |                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 7 12,70 1174       | - 12 40 22 7               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | - 12:85 1310       | ACC WA                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | + 13,00 1465       | -1443 466                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | - 13,21 1746       | 12 10 226                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The second | - 13 30 1911       | A BOUTS                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 4-13 39 170007     | 70 760                     |
| b) $Ue (V) = U_{4} - Ue = T_{4} (mh) = C_{4} (mh) = C_{4$ |            |                    | 246 24 0                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | b UFEVI 114-11-24  | + F. A. Multingter 20/Fail |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | AG-GO MA HE        | +A (MAJ da                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 400 0              | 213 20mA                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 15,10 -219         | (v3 > 1                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 11.97              |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 10,00 500          | 8,00                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 9 00 000           | 2,50                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 8,00               | 2,25                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 6,00               | 2,00                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 199 0 50           | 1,00                       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 17 - 0             | 4,090,50                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                    |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | UFTVD MA-UE        | BOURSS                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                    | LA LNAD                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1 42               |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | CO2 O              | 1.50                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 11 06              | 6                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -          | 100 0              | 11                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1                  | A.6                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | r15 - 1,539 ,      | 13                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                    |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                    | 9,95                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | I AD ACT DO DO T   | 80 10452                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-11-      | 10,00 0,020 .      | 1.                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 0 0 0 0 3          | 1,10                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 12,051 0 1         | 1,20                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -11-       | 13,051 0 1         | 130                        |
| x   -1;933   1;30   4<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 14 - 0942          | 130                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 13 -1,93           | 1/30 1 4 4                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +++++      |                    |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****       |                    |                            |