Inhaltsverzeichnis

1	Zie	l des V	<i>Tersuchs</i>	1
2	Ver	suchsa	ufbau und Durchführung	1
	2.1	Aufba	u	1
	2.2	Freie	gedämpfte Schwingung an einem Reihenschwingkreis	1
	2.3	Erzwu	ungene Schwingung an einem Reihenschwingkreis	1
3	Aus	swertu	ng	3
	3.1	Freie	gedämpfte Schwingung an einem Reihenschwingkreis	3
	3.2	Erzwi	ngene Schwingung an einem Reihenschwingkreis	7
		3.2.1	Berechnung der theoretischen Verläufe der Resonanzkurven und Phasenver- schiebungen	7
		3.2.2	Berechnung der Resonanzkurven und Phasenverschiebungen aus den Messwerten und Vergleich mit den theoretischen Verläufen	8
4	Dis	kussio	n	11
	4.1	Freie	gedämpfte Schwingung an einem Reihenschwingkreis	11
	4.2	Erzwı	ungene Schwingung an einem Reihenschwingkreis	11
\mathbf{A}	Anl	hang		13
	A.1	Abbil	dungen	13
	A.2	Tabel	len	15
	A.3	Rohda	aten	15

1 Ziel des Versuchs

In diesem Versuch soll das Verhalten eines elektrischen LCR-Reihenschwingkreises untersucht werden. Znächst soll dabei die Abklingkonstante des Schaltkreises ermittelt weden. Anschließend soll das Verhältnis der Spannung der Spannungsquelle zu den Spannungen an den drei Bauteilen sowie deren Phasenverschiebung untersucht werden.

2 Versuchsaufbau und Durchführung

2.1 Aufbau

Zunächst wird der LCR-Reihenschwingkreis auf einem Steckbrett montiert. Anschließend wird das Oszilloskop mit einem Eingang parallel zur Spannungsquelle und mit dem anderen Eingang parallel zu einem der Bauteile geschaltet. Der Schaltplan ist in Abb. 1 zu sehen.

Abbildung 1: Schaltplan des Versuchsaufbaus für die Darstellung und Messung der Spannung am Kondensator. Die Messung für die anderen Bauteile funktionert analog, es wird nur das Voltmeter am Kondensator um ein anderes Bauteil gesteckt.

2.2 Freie gedämpfte Schwingung an einem Reihenschwingkreis

Für den ersten Versuchsteil wurde an der Spannungsquelle eine Rechtecksspannung mit einer Frequenz, die deutlich unter der Resonanzfrequenz des Schwingkreises liegt, angelegt. Anschließend wurde für den Widerstand, den Kondensator und die Spule die Anzeige am Oszilloskop so eingestellt, dass sich gut sichtbare Kurve für die Spannung an der Spannungsquelle und am untersuchten Bauteil angezeigt wurde. Diese Bilder wurden zusammen mit den zugehörigen CSV-Dateien, in denen die jeweiligen Spannungen gespeichert sind, auf einem USB-Stick gespeichert.

2.3 Erzwungene Schwingung an einem Reihenschwingkreis

Im zweiten Versuchsteil wurde auf dem Oszilloskop die Anzeige so eingestellt, dass sowohl die Peak-to-Peak Spannung der beiden Channel als auch die Phasendifferenz zwischen den beiden Spannungen und die Frequenz des Wechselstroms angezeigt wurden. Die Spannungsquelle wurde so eingestellt, dass sie einen sinusförmigen Puls erzeugte. Danach wurde für jedes Bauteil eine seperate Messreihe der angezeigten Werte für einen großen Bereich von Frequenzen um die Resonanzfrequenz des Schaltkreises aufgenommen. Ein beispielhafter Schaltplan für eine Messung am Kondensator ist in Abb. 1 dargestellt.

3 Auswertung

3.1 Freie gedämpfte Schwingung an einem Reihenschwingkreis

Die Resonanzfrequen
z $f_{\rm res}$ des Reihenschwingkreises ergibt sich aus der Resonanzkreis
frequenz $\omega_{\rm res}$ mit

$$f_{\rm res} = \frac{\omega_{\rm res}}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$

Mit $L = 942 \,\mu\text{H}, C = 9.2 \,\text{nF}$ und $R = 50 \,\Omega$ ergibt sich in unserem Fall ein Wert von

$$f_{\rm res} \approx 54 \,\rm kHz.$$

In diesem Teil des Versuchs wurde eine Rechteckspannung mit einer Frequenz von $f_r = 5 \text{ kHz}$ angelegt, die deutlich kleiner als die Resonanzfrequenz f_{res} des Reihenschwingkreises ist. Damit waren die Zeitintervalle in denen U(t) = 0 ist lang genug um die freie gedämpfte Schwingung des Schwingkreises zu untersuchen.

Zunächst wurden die Spannungen am Kondensator U_{kond} , an der Spule U_{spule} und am Widerstand U_{R} gemessen. Der zeitliche Verlauf für den Widerstand ist in Abb. 2 dargestellt, der für den Kondensator in Abb. 3 und der für die Spule in Abb. 4. Weitere Abbildungen, auf denen mehrere Perioden der Spannung zu sehen sind, sind im Anhang in Abb. 10 bis 12 zu sehen.

Abbildung 2: Zeitlicher Verlauf der Spannung an der Spannungsquelle (orange) und am Widerstand (blau).

Die Schwingungsdauer T und die Abklingskonstante α ergeben sich aus den Messwerten. Es wurde in beiden Fällen die Spule verwendet, da an dieser die höchste Spannung vorhanden war und somit die Messungenauigkeit des Oszilloskop am wenigsten ins Gewicht fällt, weshalb sich an der Spule der deutlichste Verlauf der Spannung mit der Zeit aller Bauteile ergab. Für die Ermittlung der Schwingungsdauer wurden alle Zeitdifferenzen zwischen einem Minimum und den beiden benachbarten Maxima ermittelt. Diese wurden mit dem Faktor 2 multipliziert, da es sich bei der Zeitdifferenz zwischen einem Minimum und einem Maximum lediglich um eine halbe Periodendauer handelt. Danach wurden alle Werte gemittelt woraus sich eine Periodendauer von

$$T = (2,053 \pm 0,003) \cdot 10^{-7} \,\mathrm{s} \tag{1}$$

Abbildung 3: Zeitlicher Verlauf der Spannung an der Spannungsquelle (orange) und am Kondensator (blau).

Abbildung 4: Zeitlicher Verlauf der Spannung an der Spannungsquelle (orange) und an der Spule (blau).

ergab. Die Unsicherheit wurde hierbei aus der Standardabweichung des Mittelwerts berechnet.

Die Abklingkonstante α wurde aus dem U(t)-Diagrammes der Spule berechnet. Es wurde die Einhüllende des Absolutbetrages von U(t) gefittet. Dazu wurden alle U(t) < 0 mit dem Faktor -1 multipliziert. Um die Einhüllende zu fitten mussten die Maxima des Absolutbetrages ermittelt werden. Da im |U(t)|-Diagramm viele kleine Störungen vorhanden waren mussten diese herausgeglättet werden. Da eine Periode aus relativ wenig Messwerten bestand, gab es zwischen benachbarten Messwerten recht große prozentuale Unterschiede. Die Wahl einer Glättung mit einem gleitenden Durchschnitt von n Werten hätte daher nicht zum Ziel geführt und die Zeitpunkte t_i^{max} der Maxima unter Umständen leicht verschoben. Daher fiel die Wahl auf einen exponentiell gewichteten gleitenden Durchschnitt. Dieser gewichtet die Werte abhängig von deren Abstand zum Wert der geglättet werden soll exponentiell absteigend. Der exponentiell gewichtetete Durchschnitt lieferte das gewünschte Resultat, nämlich eine |U(t)|-Funktion frei von Störungen. Durch einen Vergleich der benachbarten Werte mit numpy.where konnten die Maxima ermittelt werden.

Eine visuelle Kontrolle mithilfe der Biblitothek matplotlib wurde stets durchgeführt und dadurch ausgeschlossen, dass strukturelle Programmierfehler passierten. Die Verwendung des Absolutbetrages hatte den Vorteil, dass doppelt soviele Messwerte für den Fit verwendet wurden, wodurch die approximierten Werte genauer sind und einen geringeren Fehler haben.

Dann wurde mithilfe der Funktion curve_fit aus der scipy.optimize Bibliothek die Funktion

$$U_{\max}(t) = U_0 \cdot e^{-\alpha t} \tag{2}$$

auf die Maxima des Absolutbetrages gefittet. Dies ist in Abb. 5 dargestellt.

Abbildung 5: Der Betrag des zeitlichen Verlaufs der Spannung an der Spule aus Abb. 4. Die Werte wurden geglättet und die Maxima mit numpy.where bestimmt. Mit der curve_fit Funktion der scipy.optimize wurde eine Exponentialfunktion zur Bestimmung der Abklingkonstanten gefittet, siehe Gleichung (5).

Aus dem Fit erhalten wir die Werte:

$$U_0 = (0.54 \pm 0.01) \,\mathrm{V} \tag{3}$$

$$\alpha = (100\,000 \pm 1600)\,\mathrm{s}^{-1} \tag{4}$$

Somit erhalten wir mit den Bestwerten U_0 und α die gefittete Funktion der Einhüllenden aus Gleichung (2)

$$U_{\rm max}(t) = 0.54 \,\mathrm{V} \cdot e^{-100\,000\,\mathrm{s}^{-1}t}.$$
(5)

Aus der Theorie hätten wir für α erwartet, dass gilt:

$$\alpha = \frac{R}{2L} \approx 26539 \,\mathrm{s}^{-1}.\tag{6}$$

Und für ${\cal T}$ hatten wir

$$T = \frac{1}{f} \approx \frac{1}{5.7 \,\mathrm{kHz}} = 1.75 \cdot 10^{-4} s \tag{7}$$

erwartet.

3.2 Erzwungene Schwingung an einem Reihenschwingkreis

3.2.1 Berechnung der theoretischen Verläufe der Resonanzkurven und Phasenverschiebungen

In einem Wechselstromkreis gilt für den Zusammenhang zwischen der Spannung U, dem StromI und der Impedanz Z

$$U = ZI,$$

wobei U und I von der Kreisfrequenz ω und von der Zeit t abhängen und Z lediglich von ω abhängt. Die Impedanz eines Widerstands Z_R , eines Kondensators Z_C und die einer Spule Z_L ergeben sich durch

$$Z_R = R \qquad \qquad Z_C = \frac{1}{i\omega C} \qquad \qquad Z_L = i\omega L, \qquad (8)$$

wobei C die Kapazität des Kondensators und L die Induktivität der Spule bezeichnet. Somit folgt mit Gleichung (8) in einem LCR-Schwingkreis

$$U_R = RI_0 \qquad \qquad U_C = \frac{I_0}{i\omega C} \qquad \qquad U_L = i\omega LI_0 \qquad (9)$$

für den Spannungsabfall U_R an einem Widerstand, U_C an einem Kondensators und U_L an einer Spule.

Aus der Kirchhoffschen Maschenregel folgt für einen LCR-Schwingkreis mit einer Spannungsquelle, die eine Spannung von U_0 und einen Strom von I_0 liefert,

$$U_0 = \left(Z_R + Z_C + Z_L\right)I_0 = \left(R + \frac{1}{i\omega C} + i\omega L\right)I_0 = \left(R + i\left(\omega L - \frac{1}{\omega C}\right)\right)I_0.$$
 (10)

Aus Gleichungen (8) bis (10) lassen sich die Resonanzkurven

$$H_i = \frac{U_i}{U_0} \tag{11}$$

der einzelnen Bauteile bestimmen, wobei i für die verschiedenen Bauteile steht.

Die zugehörigen Phasenverschiebungen ergeben sich durch

$$\Phi_i = \arctan\left(\frac{\Im(H_i)}{\Re(H_i)}\right). \tag{12}$$

Es ergibt sich also durch Einsetzen der Gleichungen (9) und (10) in Gleichung (11) und Umformen für den Widerstand ein Zusammenhang von

$$H_R = \frac{U_R}{U_0} = \frac{R}{R + i\left(\omega L - \frac{1}{\omega C}\right)} = \frac{R}{R + i\left(\omega L - \frac{1}{\omega C}\right)} \frac{R - i\left(\omega L - \frac{1}{\omega C}\right)}{R - i\left(\omega L - \frac{1}{\omega C}\right)}$$
$$= \frac{R^2}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} - i\frac{R\left(\omega L - \frac{1}{\omega C}\right)}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}.$$
(13)

Analog ergibt sich für den Kondensator

$$H_C = \frac{\frac{1}{i\omega C}}{R + i\left(\omega L - \frac{1}{\omega C}\right)} = \frac{-\frac{\omega L - \frac{1}{\omega L}}{\omega C} - \frac{iR}{\omega C}}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

$$=\frac{-\frac{L}{C}+\frac{1}{\omega^2 C^2}}{R^2+\left(\omega L-\frac{1}{\omega C}\right)^2}-i\frac{R}{R^2+\left(\omega L-\frac{1}{\omega C}\right)^2}$$
(14)

und für die Spule

$$H_L = \frac{i\omega L}{R + i\left(\omega L - \frac{1}{\omega C}\right)} = \frac{\omega L\left(\omega L - \frac{1}{\omega C}\right)}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} + i\frac{\omega LR}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} .$$
 (15)

Für die Phasenverschiebungen erhält man durch Einsetzen der Gleichungen (13) bis (15) in Gleichung (12):

$$\Phi_R = \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right) \quad \Phi_C = \arctan\left(\frac{R}{-\left(\omega L - \frac{1}{\omega C}\right)}\right) \quad \Phi_L = \arctan\left(\frac{-R}{\omega L - \frac{1}{\omega C}}\right), \quad (16)$$

wobei Φ_R für die Phasenverschiebung der Spannung am Widerstand und Φ_C bzw. Φ_L für die Phasenverschiebungen am Kondensator bzw. an der Spule stehen.

Die im Versuchsaufbau verwendeten Bauteile waren mit $R = (50,0 \pm 2,5) \Omega$, $C = 9,20 \,\mathrm{nF}$ und $L = 942 \,\mu\mathrm{H}$ angegeben. Die theoretischen Verläufe der Resonanzkurven und Phasenverschiebungen der Bauteile in Abhängigkeit der Frequenz f erhält man mithilfe von

$$f = 2\pi\omega$$

und durch Einsetzen dieser Werte in die Gleichungen (13) bis (15) und in Gleichung (16).

3.2.2 Berechnung der Resonanzkurven und Phasenverschiebungen aus den Messwerten und Vergleich mit den theoretischen Verläufen

Am Oszilloskop wurde für jedes Bauteil U_0 und U_i bei verschiedenen Frequenzen f abgelesen, wobei *i* wieder für die verschiedenen Bauteile steht. Aus den Schwankungen der Werte beim Ablesen wurden statistische Fehler s_{U_i} , s_{U_0} und s_f geschätzt. Daraus wurde dann für jede Frequenz mit Gleichung (11) der Wert der Resonanzkurve berechnet, wobei sich der Fehler mit

$$s_{H_i} = \sqrt{\left(\frac{s_{U_i}}{U_0}\right)^2 + \left(\frac{U_i}{U_0^2}s_{U_0}\right)^2}$$

aus der Gaußschen Fehlerfortpflanzung ergibt.

Zu Beginn des Versuchs wurde das Messgerät direkt an die Spannungsquelle angeschlossen, um die Messung zu überprüfen. Am Oszilloskop zeigte sich dabei, dass das Messgerät die Spannung um einen Faktor 10 zu verringern schien. Um das auszugleichen, wurden die gemessenen Spannungen U_i sowie die geschätzten Unsicherheiten s_{U_i} mit einem Faktor von 10 multipliziert.

Die aus den Messgrößen berechneten Werte für die Resonanzkurve H_R des Widerstands sowie der mit Gleichung (13) berechnete theoretische Verlauf von H_R sind in Abb. 6 dargestellt, für den Kondensator sind die berechneten und gemessenen Verläufe in Abb. 7, für die Spule in Abb. 8 dargestellt. Die Unsicherheiten der Werte sind auch mit eingezeichnet.

Auch für die Phasenverschiebungen Φ_i wurden jeweils die gemessenen Größen mit Unsicherheiten und die mit Gleichung (16) berechneten theoretisch erwarteten Werte von Φ_i in einer Abbildung dargestellt. Das Diagramm ist in Abb. 9 zu sehen.

Abbildung 6: Messwerte für die Resonanzkurve des Widerstands mit Unsicherheiten sowie der berechnete theoretische Verlauf der Resonanzkurve.

Abbildung 7: Messwerte für die Resonanzkurve des Kondensators mit Unsicherheiten sowie der berechnete theoretische Verlauf der Resonanzkurve.

Abbildung 8: Messwerte für die Resonanzkurve der Spule mit Unsicherheiten sowie der berechnete theoretische Verlauf der Resonanzkurve.

Abbildung 9: Messwerte für die Phasenverschiebung am Widerstand Φ_R , am Kondensator Φ_C und an der Spule Φ_L mit Unsicherheiten sowie die jeweils theoretisch erwarteten Verläufe.

4 Diskussion

4.1 Freie gedämpfte Schwingung an einem Reihenschwingkreis

Im ersten Versuchseil nahmen wir für die Spannung der drei Bauteile jeweils ein Bild auf. Bei der Spule zeigte sich ein erwartungsgemäßer Verlauf der Kurve. Zum Ende der Phase mit maximaler Spannung an der Spannungsquelle lag keine Spannung an der Spule an. Dies liegt daran, dass der Kondensator zu diesem Zeitpunkt bereits aufgeladen ist und somit kein Strom mehr fließt, der sich ändern könnte um eine Spannung zu induzieren. Sobald die Spannungsquelle abgeschaltet wird, liegt eine Spannung an der Spule an. Grund dafür ist, dass der Kondensator sich ab diesem Moment zu entladen beginnt, womit sich die Stromstärke ändert, weshalb an der Spule eine Spannung induziert wird. In dem Moment wo der Kondensator sich entladen hat, ist die Spannung am höchsten. Ab dann beginnt der Schwingkreis mit der harmonischen Schwingung, die sich im Verlauf der Spannung der Spule deutlich zeigt. Die Maxima der Spannung werden dabei im Laufe der Zeit geringer, da der Schwingkreis durch die Leistung am Widerstand an Energie verliert.

Durch Approximation mit dem curve_fit ergab sich für die Abklingkonstante ein Wert von

 $\alpha = (100\,000\pm 1600)\,\mathrm{s}^{-1}$

und für die Anfangspannung ein Wert von

$$U_0 = (0.54 \pm 0.01) \,\mathrm{V}.$$

Dies entspricht einer Abklingzeit τ von

$$\tau = (1000 \pm 16) \cdot 10^{-8} \,\mathrm{s.}$$

Für die Abklingkonstante enspricht dies einem t-Wert von t = 45,91, das bedeutet der angenäherte Wert ist überhaupt nicht mit dem erwarteten Wert vereinbar. Aus Abb. 7 ergibt sich, dass die Spannung an der Spule $U_0 \approx 10,6$ V ist, also das ungefähr zehnfache des approximierten Wertes. Dies legt die Vermutung nahe, dass uns ein Fehler unterlaufen ist bei der Berücksichtigung des Verstärkerbauteils. Es wurde ein **curve_fit** der Maxima des Absolutbetrages der Spannung an der Spule mit den Unbekannten U_0 und α gemacht. Im Nachhinein hätten wir U_0 auf einen festen Wert setzen müssen und so für α vermutlich einen genaueren Wert erhalten. Experimentell fanden wir heraus, dass wir für $U_0 = 0,125$ V eine Abklingkonstante von $\alpha = (26\,000\pm7000)$ s⁻¹ erhielten.

Für die Periodendauer Terhielten wir einen Wert von

$$T = (2,053 \pm 0,003) \cdot 10^{-7} \,\mathrm{s}.$$

Bei der erwarteten Periodendauer von $1,75 \cdot 10^{-4}s$ entspricht das einem t-Wert von $t = 582\,649,0$ und die beiden Werte sind erneut nicht miteinander vereinbar.

4.2 Erzwungene Schwingung an einem Reihenschwingkreis

In diesem Versuchsteil wurden die aus den Messwerten berechneten Resonanzkurven für den Widerstand, den Kondensator und die Spule mit denen aus der Theorie erwarteten Verläufen verglichen. In Abb. 6 sind die Messwerte für den Widerstand mit dem erwarteten Verlauf aufgetragen, in Abb. 7 die für den Kondensator und in Abb. 8 die für die Spule.

Bei Betrachtung der Abbildungen fällt auf, dass für alle Bauteile die gemessenen Werte für kleine Frequenzen sehr nah an den erwarteten Werten liegt. Im Bereich der Resonanzfrequenz, in dem die Resonanzkurve stark ansteigt, liegen die Werte für alle Bauteile weit unter dem erwarteten Wert.

Dies könnte daran liegen, dass in der Rechnung Reibungsverluste nicht berücksichtigt wurden. Vor allem im Bereich der Resonanz könnte das zu den starken Abweichungen geführt haben.

Auffällig ist auch, dass die Messwerte des Widerstands tendenziell eher unter der erwarteten Kurve liegen, und dass die Messwerte des Widerstands weniger gut zum zugehörigen berechneten Verlauf zu passen scheinen als die des Kondensators und der Spule. Das liegt wahrscheinlich daran, dass der verwendete Widerstand kein perfekt ohmscher Widerstand war, die Rechnung aber für einen solchen durchgeführt wurde.

Anschließend wurde die Phasenverschiebung zwischen der angelegten Spannung und den an den Bauteilen gemessenen Spannungen gemessen und in Abhängigkeit der Frequenz aufgetragen. Zusätzlich wurde wieder die aus der Theorie berechneten Verläufe eingetragen. Für alle Bauteile sind die gemessenen und berechneten Phasenverschiebungen in Abb. 9 dargestellt.

Auch bei den Phasenverschiebungen wird deutlich, dass die Messwerte nah an den erwarteten Verläufen liegen. Vor allem für den Kondensator liegt der erwartete Verlauf häufig innerhalb der Unsicherheiten der Werte. Die Messwerte der Spule liegen im Bereich vor der Resonanzfrequenz eher über der erwarteten Kurve, und im Bereich nach der Resonanzfrequenz eher darunter. Das liegt wahrscheinlich daran, dass in der Berechnung von einer idealen Spule ausgegangen wurde.

Auch bei den Phasenverschiebungen fällt auf, dass die Messwerte des Widerstands am stärksten vom theoretischen Verlauf abweichen. Wie schon bei den Resonanzkurven liegt das möglicherweise an Reibungsverluste, die bei der Rechnung mit einem idealen ohmschen Widerstand nicht berücksichtigt wurden.

Im Großen und Ganzen ist für alle Bauteile sowohl bei den Resonanzkurven als auch bei den Phasenverschiebungen ein klarer Zusammenhang zwischen den theoretischen Verläufen und den gemessenen Werten sichtbar. Die Erwartungen können also bestätigt werden. Die Abweichung der Messwerte vom theoretischen Verlauf bis deutlich über die Messunsicherheiten an einzelnen Stellen liegt dabei wahrscheinlich vor allem an der Annahme in der Rechnung, dass die Bauteile sich ideal verhalten.

A Anhang

A.1 Abbildungen

Abbildung 10: Zeitlicher Verlauf der Spannung an der Spannungsquelle (orange) und am Widerstand (blau).

Abbildung 11: Zeitlicher Verlauf der Spannung an der Spannungsquelle (orange) und am Kondensator (blau).

Abbildung 12: Zeitlicher Verlauf der Spannung an der Spannungsquelle (orange) und am Kondensator (blau).

A.2 Tabellen

U_0 in ${\rm V}$	U_{C} in ${\rm V}$	Φ in $^\circ$	f in kHz
154 ± 2	$15,6\pm0,2$	1 ± 3	$4,7\pm0,2$
154 ± 2	$16,2\pm0,2$	2 ± 3	$10,6\pm0,2$
154 ± 2	$17,2\pm0,2$	5 ± 3	$16,6\pm0,2$
152 ± 2	$17,8\pm0,2$	5 ± 3	$20,7\pm0,2$
152 ± 2	$20,4\pm0,2$	8 ± 3	$26{,}7\pm0{,}2$
150 ± 2	$22,0\pm0,2$	10 ± 3	$30,7\pm0,2$
146 ± 2	$24{,}8\pm0{,}2$	16 ± 3	$35,7\pm0,2$
136 ± 2	$30,4\pm0,2$	22 ± 3	$41,\!8\pm0,\!2$
126 ± 2	$35,2\pm0,2$	32 ± 3	$45{,}5\pm0{,}2$
110 ± 2	$39,2\pm0,2$	43 ± 3	$49,1\pm0,2$
100 ± 2	$40,8\pm0,2$	54 ± 3	$50,9\pm0,2$
94 ± 2	$40,8\pm0,2$	74 ± 3	$52{,}6\pm0{,}2$
92 ± 2	$41{,}6\pm0{,}2$	82 ± 3	$53,4\pm0,2$
90 ± 2	$40,0\pm0,2$	102 ± 3	$55,7\pm0,2$
100 ± 2	$35,2\pm0,2$	123 ± 3	$59,1\pm0,2$
106 ± 2	$32,0\pm0,2$	135 ± 3	$60,9\pm0,2$
118 ± 2	$26,4\pm0,2$	146 ± 3	$65,1\pm0,2$
134 ± 2	$19,6\pm0,2$	150 ± 3	$70,7\pm0,2$
140 ± 2	$14,4\pm0,2$	161 ± 3	$77,8\pm0,2$
146 ± 2	$10,6\pm0,2$	162 ± 3	$86,3\pm0,2$
150 ± 2	$8,8\pm0,2$	165 ± 3	$93,5\pm0,2$
148 ± 2	$7,4\pm0,2$	167 ± 3	$100,6\pm0,2$
150 ± 2	$5,6\pm0,2$	172 ± 3	$109,6\pm0,2$
152 ± 2	$5,2\pm0,2$	171 ± 3	$115,7\pm0,2$
150 ± 2	$4,7\pm0,2$	170 ± 3	$121,1\pm0,2$

Tabelle 1: Messwerte für den Kondensator

A.3 Rohdaten

V53 17.3.22	2				3 perm
Bild	1 .	ch 2. :	spanning squelle	ch2: Kondust	
Bild	2:	1		liz: Willingto	A R= 5052
					C= 2,20 2F
Bild	\$1			oh Z : Spule	91/2
C	1. 5 t1 Hz				L= Frepo
2 paanu	and a come	11	sidertales 1.1	tZN Distant	P. i its and ishare allestant in 50
			dhZ:	10,2V	
Widerstand			Phy	z:±3	
	6.95		K Fry	une tocz litz	
	dra: VIE		dr Z. Vpp	Phase	Frequer
	1544		AUC VI	- 4 4 7	4 2591 H.
	.1340		100ml	-113	TITOURS
	154V		ZGZmy	-112	9 69 0 Litz
	154V		520ml	-112	15,76 kbz
	450 N		800mV	-114	20,70 kHz
	AFOV		o ab V	500	757414
	1,50.			105	us, T 1 W14
	150V		1,60 V	- 37	30,72 Lettz
	144V		Z,20V	-84,2	35,71/42
	41.911			d0.6	
	1460		Z, 49V	- 80,0	St, 74 kHz
	138V		7 741	-705	40871.14
			9700	1-13	
	130V		3,1 V	-60,3	43,76 kcHz
	172V		3,46V	-44,8	46,732Hz
	46214		- chail		50-51-11
	710 C V		7 8414	-24,8	SV 25 4 178
	96 V		4.04 V	-98	5155 64-
				5,0	5 15 - 116
	VSE		4,10 V	1,42	52,63 WHZ
	So∨		414V	10,1	53,76 kHz 1
	SOV		In and	7.0.7	Charles II
	201		4/40	2012	SS,05 LHZ
	96V		4,100	46.8	578 KH2
	NOZV		3.96 V	59,6	60.74 uttz
	MUV		3,64V	72,9	63,69 kHz
	126V		3,38V	79,4	66,89 4.42
	134V		3,101	23,3	70,42 kHz
	138V		Z,26V	88,6	75,73 kHz
	1460		2,66V	30,2	BUJOJ Kt/2
	1481		2 20V	10,0	52/ 24 WHZ
	150 V		2.02V	101	101,0 LM2
	150V		1,76V	106	110,7417
	1501		1,60V	140	120,64#2

	11								1	1.1		-				
	1	1					Felder	dia	1 1	20						
	Kondens	tor	1					diz	2.3	0,2	V				-	
		Ges						Phase	: ±	3						
		ch 1 Vpp		ch 2 Vpp	Phiese	Frequence		Frequ	neve :	± 0	zkt	ž .				-
		ATUN		4014				ŀ								
		/1540		15,6V	1,02	4,708 KHZ									_	
		1541		10,2V	2/31	10,67 KHE										+
		1511		11+,20	4,5	16,63 WHZ										
		1524		AT DV	5,19	ZO, FO UTZ										+
		12LV		20,40	7,10	26,70 1012										+
1		AULA		24/01	3,45	30,75 hHz									-	
		1968		ZTIBV	13,3	42,77 KTB										
365		1 264		50,40	244	41,88 htz									_	
		1264	1.	52,00	\$7,6	40,54 612							-	-		
		400		SJ,CV	43,0	43,72 ktt2					-					
		SUAN		40,00	54,4	SOJE KUZ			-							
	_	67.01		40,80	75,6	52,65 ktlz										
		Spal		41,6	BL 1	>>,4BLTZ										+
		JO AN		40,00	102	\$3,72h112										
		1001		37 C N	100	03,16kHz										
		1000		36,0 4	150	60, 30 KHZ									-	
		1341		6,4 V	146	65,73kHZ										+
	-	1-11		13,60	150	70, + CKH2										+
		1400		14,41	167	77.884072										
		ATAV		10,00	102	20, 20 LTZ										+
		1100		7 111	165	1019 (14										
		1501		5/01	127	109/114-										
		1571		SIDD -	172	101,62012			-							
		1501		1,2711	170	11/5/7001	£ .		-							
	-	1000		7/101	170	16.111 16114		_								
all		154V		700mV	-170	10 201 Hz										
		152V		1 841	119	17 7 AL-H-			-							t
		A SO V		3.92V	- 166	24.691.46			-					-		t
		148V		6 72V	-161	20.66 1.112					- 1					
		144V		10 8V	- 160	25 41 4/2								-	-	t
		142V		15.7V	-157	39.75 Lt/2									+	
		130V :		20. 8V	-149	43,48kHz										t
		118V		24,8V	-144	45.87447										
		1181		28,0V	-135	47,44 4 Hz										
		110V		30,4V	-130	48,78 httz										T
		102V		32,4V	-125	49,50442										
		NORV		33,6V	-118	51,026Hz										
		18C		36,0V	-1-10	51,87 kt/2										
		54V		376V	-101	52,69 kHz										
-	9	30V		38,4V	- 93,9	53.30 KHZ										
	4	Sov		40,8V	- 87,0	54,70 httz										
	0	Sal		40,0V	-72,8	55:68 ht/2										
		04,0V		40 gv	-67,1	SB. 82 ktl	2									
	0	38,0V		40,0V	-58,1	58,284+12										
	1	08 V		38,4V	- 45,8	60,69 kHz										
	1	ZZV		36,0V	-31,1	64,18 WHZ										
2	1	22V		34:0V	-25,9	66,53kth										
	1	341		30,4 V	-20,0	70,32 KHZ										
_	1	42V		28,0V	- 76,4	75,45 KHZ										
	1	46V		24,8V	-12,6	82,85 Ltlz										
_	1	46V		Z3,2V	-123	89,93										
	-															

51 vla				
cha = Upp	ch 2: Vpp	Phase	Frequenz	
150V	21,6V	8,74	97,094Hz	
1504	20,8V	- 7,69	non, 6 witz	
NON	20,8V	-7,60	105,74Hz	
15ZV	20,0V	- 4,86	113,06HZ	
150V	13,2V	-6,06	NZO, & WHZ	
Dateiorder New Fol				ch1: 156V
Uieder heling Teil	N: Pild	N: Spule	5,7 WHZ	chz 1,30V
	Bild	z: Spole		
	211	3: V.	L < 21/Hz	1.1 : 156V
	Bild	Konth.	SATO SITUTE	12: 128mV
				cy c c c c c c c c c c c c c c c c c c
	e 11 4	: Kaling	tix 5,7 WH	-(
	\$21.00	1 Or alas	JIIW	(2 : 50 (V
				en c. copmet
	B.U.	5: Widered	and : 5.76H.	5.1: 154V
	157(0)	U	and a finally	and i st my
				Gut nt
	Rid	: Liders	ford: 576/17	ch 1 156 V
	1244		10 00A 07,100-0	-62 AZO X
Dahlorden New Jol A	× 10	Messacia	34 - 14 M (C) (C) (C) (C)	
Dilder mit	A 100 A 201	Janger		41 156V .
Ridai	V		5 2 1.44	dot rkowy
protin	Ronde Sales		JI WIIL	2010 3 00 00 1
R.14 7:	K. de cator		t. 7 kHz	Jahn 1564
STOC L	ponter server			1 Z SAZINV
12-12 3/	Wheeler 1		5,76472	5 -67 156 V
12.10.5	Contra a fange			Lichz SYYMV
Bild 4	Industant		5,76Hz	Sens 156V
	WINGER -			Lohr Szenv
Bild 5	50.1.		574th	5 chn 156V
17.8 2	- Man			Lahz 19,6V
Bild 6	Soula		5,74,842	8 chit 156V
				Lah Z 10.7V
				7- 8. 0
				0.8 00